
1

An Introduction to Online Video Game QoS and
QoE Influencing Factors

Florian Metzger, Stefan Geißler, Alexej Grigorjew, Frank Loh,
Christian Moldovan, Michael Seufert, Tobias Hoßfeld

University of Würzburg, Chair of Communication Networks, Würzburg, Germany
Email: <firstname>.<lastname>@uni-wuerzburg.de

Abstract—Online video games and cloud gaming are rapidly
growing in pervasiveness. Their resource demands can put sig-
nificant stress on the global communication infrastructure. And
network conditions are amongst the chief factors that influence
one’s enjoyment while playing games. This makes it imperative
for video games to be considered for network dimensioning,
server placement or protocol development.

For that reason, in this work we provide an introduction to the
technical aspects of video games in general and of their network
aspects in particular. This understanding forms the basis for a
rich taxonomy of factors that influence and provide context to a
video game’s Quality of Service (QoS) and Quality of Experience
(QoE). The taxonomy covers influence factors from all aspects
involved in a video game, from the subjective player and game
influence factors to the system and networking influence factors.
Finally, this work gives an overview of conducted and ongoing
research as well as future research opportunities while taking
into account lessons learned from past approaches.

I. INTRODUCTION

Video games, and online video games in particular, have
moved from being a niche hobby to being considered a
mainstream media. In 2019 alone, the gaming industry gen-
erated $120B in revenues with an audience of almost one
billion people [1]. During the 2020 pandemic year the growth
intensified, not only driven by global social distancing mea-
sures but also by the launch of a new console generation.
For example, the US gaming market saw a 27% increase
[2]. Apart from the economic perspective, the online video
game growth poses significant challenges and opportunities for
communication networks. Cisco projected that gaming Internet
traffic will grow ninefold between 2017 and 2022 [3]. This
is aligned with the recent trend towards commercial Cloud
Gaming solutions [4]. All these developments make online
and cloud gaming an important and relevant research area. To
accommodate these new and complex services, networks have
to be scaled, algorithms and protocols have to be adjusted, user
behavior has to be analyzed, and cloud environments have to
be improved to deliver the ideal gaming Quality of Experience
(QoE) to end uses.

Online video game developers and Internet Service
Providers (ISPs) want to deliver the best possible gaming
experience using the available physical network structures. In
today’s landscape, consisting of numerous and heterogeneous
network providers and access technologies, it is a complex
challenge for video game developers and publishers to provide
acceptable service quality—i.e. Quality of Service (QoS)—to

all users. The experience can degrade if any of the involved
components at any one of the operators start to misbehave or
become overloaded, potentially leading to increased customer
churn rates and eventually also impacting revenues [5].

In addition to these technical challenges, the heterogeneous
user base and gaming environments as well as the subjective
perception of games reinforce the complexity. Not only do
different types of games pose different requirements to the
hardware and available network resources, but every player
will have different tastes, access to different hardware and
platforms as well as different past experiences and skills.
All of these factors will also influence the subjective quality
as perceived by the players—i.e. QoE [6]. In order to be
able to deal with any potential degradation or issue and to
generally improve both QoS and QoE of online video games
it is crucial to understand all involved aspects. Only then,
detailed and general models can be developed and specific
scenarios, influence factors, and system interactions can be
evaluated. The resulting research challenge is the development
of solutions to evaluate and improve both the QoS and QoE for
video games with network involvement. To this end, research
questions concerning each aspect of the networked gaming
setup need to be examined. On the game provider’s side,
problems like resource provisioning, scaling, load balancing as
well as game distribution have to be solved. From a network
perspective, operators have to ensure adequate bandwidth
and delays for these highly interactive applications. Finally,
at the users’ side, the interplay between the received QoS
and the resulting QoE, user behavior, and satisfaction need
to be analyzed. The heterogeneous landscape with multiple
stakeholders makes the evaluation of QoS and QoE in video
gaming scenarios a non-trivial task.

In order to address these challenges and to provide a
point of entry for research into this highly complex topic,
the contribution of this work is (i) to provide a general
taxonomy of influence and context factors of the QoS and
QoE of video games and, based on this taxonomy, (ii) to
provide a comprehensive introduction into the inner workings
of networked video games as well as an introduction to video
game QoE research.

To the best of our knowledge this is the first work that sheds
light on the video game ecosystem as a whole. It includes
both online video games as well as cloud gaming and offers
a combined overview over the technical, networking, and
subjective aspects. But this also means, that certain aspects

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

video game qoe and qos &
taxonomy, subjective aspectsSec. II

vi
de

o
ga

m
e

ne
tw

or
k

ar
ch

ite
ct

ur
es

Se
c.

 V

te
ch

ni
ca

l g
am

e
co

m
po

ne
nt

s
&

m
od

el
lin

g
Se

c.
 II

I

introductionSec. I

ne
tw

or
ki

ng
as

pe
ct

s
Se

c.
 IV

performance
evaluation of gamesSec. VI

user studiesSec. VII

future researchSec. VIII

conclusionSec. IX

Figure 1: Structural overview of this manuscript. Dashed box
indicates the main contents of this work. Sections in green
contain mostly subjective aspects, yellow sections primarily
concern objective and technical aspects.

can not be treated with the utmost depth in this manuscript,
as this would result in a full-length book. Instead, we will
direct the interested reader to more in-depth material on those
particular topics. Other surveys and tutorials in this area
are often of a narrower focus, and can additionally become
outdated rather quickly due to the rapidly developing field of
QoE in cloud gaming. The technical aspects of cloud gaming
services, the makeup of modern online games but also the
users’ expectations towards services have drastically changed
today, thus inviting a fresh perspective on the field while not
disregarding established fundamentals. Previous works include
several general and QoE-focused publications on Cloud Gam-
ing, including [7]–[9]. Of these, only the latter has been written
with the current development of cloud gaming in mind (as of
2021). Other works focus solely on aspects of online video
games and not on cloud gaming. Here, [10], [11] can give
a good, albeit rather old, academically focused overview on
online gaming, while [12] is written from the perspective of
a game developer. To our knowledge, no other work attempts
to cover all of these aspects and their recent developments
together under one umbrella.

In order to facilitate our contribution, this work is split
into portions that focus more on tutorial aspects of explaining
certain video game relationships, while others primarily serve
as survey to past and current research. These are further
split into technical and subjective aspects. Figure 1 illustrates
our approach. Section II presents a detailed taxonomy of
influence factors of different categories, derived both from
the knowledge of previous QoS and QoE research and from
a fundamental comprehension of online video games. The
taxonomy itself is illustrated in Figure 2, and serves as the
conceptual reason for how we split this work up.

The subsequent sections guide through the aspects described
in the taxonomy, starting with a brief overview of player

and game influence and context factors in Section II-B.
Section III then introduces technical and system aspects of
video games, including a simple model representation of video
game systems. Section IV is dedicated to introducing and
exploring all network-related aspects of online and cloud
gaming, while Section V focuses solely on covering their
different networking architectures. Based on all these insights,
the following two sections are concerned with the evaluation
and assessment of QoS and QoE. Section VI covers the
performance evaluation of games and system factors that can
influence them. In particular, a series of measurement points
are introduced that are able to cover specific influence factors.
Section VII encompasses a survey of game QoS and QoE
evaluation metrics, and how they are used in past video game
user studies. With all this information compiled together,
we formulate future challenges and open research tasks in
Section VIII. Finally, Section IX concludes this work.

II. VIDEO GAME QOS AND QOE

To start any discussion about QoE one has to first agree on
a common understanding of what that term means for video
games. QoE is often described as the acceptability of a service,
or as the perceived, i.e. the experienced, quality of a service.
A prominent definition is for example given in [6]. Common
to all definitions of QoE is the subjective opinion component
that distinguishes them from purely objective QoS metrics.
The existing definitions of QoE are generic and unspecific to
any topic and can thus be applied to video games as well.

However, there is also some overlap in the definitions of
QoS, QoE and User Experience (UX). The overlap of UX
(which also deals with interaction design and quality) and QoE
is a broader subject of discussions and not a topic of this work
[13]. For this work we can assume that QoE is a broader term,
that deals with matters of interaction quality in addition to,
e.g., image quality assessment.

Video game QoS metrics include measurable interactions
of players with a game, such as task completion times or
highscores. They are therefore also called application layer
QoS factors or player performance metrics, as they describe
factors directly associated with a game itself and not with
some lower layers as other QoS metrics would. The existence
of player performance metrics in many video games makes it
often much easier to perform user studies solely based on these
performance metrics, instead of directly assessing subjective
QoE. While factors of the lower layers are directly influencing
QoE factors, the relationship of application layer QoS with the
QoE is not fully understood yet. There are no good models
yet that would, for example, map a specific highscore to a
subjective rating of that game. And just performing well in
a game does not necessarily imply that you actually enjoy
playing the game.

Two further aspects differ when it comes to interactive
applications in particular. Compared to passively consumed
media, the interactive nature of video games brings a number
of additional system, human and contextual factors along that
need to be taken into account. Second, the approaches to
assessing video game QoE are more challenging, as the range

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

of system parameters exceeds those of, e.g., video streaming.
Video games implement very diverse and often complex
sets of interaction mechanics, and there is no one-size-fits
all assessment approach yet that would cover all aspects at
once. This becomes even more complex when distinguishing
between online video games and cloud gaming (more on that
later). Cloud gaming introduces further spatial and temporal
complexity through its RTP-based video streaming in addition
to any other gaming QoE factor.

All of these circumstances and open issues have been rec-
ognized by the QoE community and are being worked on, e.g.
see [14], [15]. Our work intends to contribute to these ongoing
discussions. The taxonomy introduced in this section—in con-
junction with the subsequent sections that explain and discuss
the concrete taxonomy factors—tackles the issue of a common
understanding of video games and influencing aspects for
the purpose of video game studies. The second issue—of
surveying video game assessment approaches—is the focus
of the latter half of this manuscript. In that second half,
Section VI highlights game performance metrics and where
and how to measure them. These mostly center around the
influence of lag and other network QoS factors, their sources
and measurement approaches. And Section VII highlights QoE
assessments performed in the past as well as general QoE
assessment methodologies.

A. A Taxonomy of Video Game QoS and QoE Factors

Figure 2 depicts our approach at a cohesive taxonomy of
direct and indirect video game QoE and QoS influencing
factors, and forms the basis for the subsequent sections. The
taxonomy consists of five larger factors that each represent
a separate entity in video gaming: the player, the game, the
game client (which runs the actual, user-visible game), the
game server (runs and coordinates the backend of multiplayer
online games in a centralized approach), and the network. Each
factor can be drilled down further to more specific influencing
properties of that entity. The figure gives concrete influencing
factor examples for each of them. The separation of the game
client into local and remote factors—and for example not just a
differentiation between client and server—becomes necessary
due to cloud gaming. Here, the game client can also be a
remote entity (with its output provided to the user in the form
of a video stream), but is otherwise functionally identical to a
locally running game. Depending on whether the game client
is used for cloud gaming or not, different influencing factors
apply that would otherwise not.

In turn, the factors are allocated into three areas, covering
subjective and context aspects (continued in Section II-B),
technical and system aspects (continued in Section III), as
well as networking aspects (continued in Section IV). The
assignment is not unambiguous, as most of the factors contain
aspects of several areas. For example, a game has several
system aspects affixed to it with regards to its design and
implementation of specific elements, but their perception and
reception is subjective to the individual, and may thus result
in different experiences. By this it is also placed in a larger
context and environment.

The basic purpose of this taxonomy is to highlight all
aspects and types of influencing factors that potentially impact
the assessment of video game QoE. It specifically contains
many factors that may not be immediately evident to be an
influencing property during assessment. However, these still
need to be considered, and may be the deciding parameter, e.g.,
for the creation of high-fidelity video game QoE models. Such
QoE models are of high interest for the research community,
especially when it concerns cloud gaming. Various approaches
are already underway, e.g., by the ITU-T SG.12 in the form
of a Parametric bitstream-based Quality Assessment of Cloud
Gaming Services (P.BBQCG, [16]).

This is of course also not the first approach to such a
taxonomy. Already the 2013 Qualinet whitepaper [6] debated
three areas of influence factors (unspecific to video games):
human, system, and context. Another 2013 approach to a
video game taxonomy offered a separation of QoS and QoE
factors and how they can be assessed with a questionnaire
[17]. For a more recent and topical example, both ITU-
T Rec. G.1032 [18] and Rec. P.809 [19] contain approaches
with a focus on collecting game quality and QoE influencing
factors. Our approach is aimed at extending all these prior
approaches with additional factors and factor interactions that
may not have been in the spotlight in the past, and explain
why we think that they are important. We want to especially
highlight concrete technical influence factors that may affect
the QoS and QoE and have only been scarcely integrated into
past taxonomies. The goal of this new taxonomy is also in
line with those past approaches: to map out the landscape
of video game parameters that are relevant for measurement
experiments as well as user assessments, and to provide means
to direct future research efforts towards factors that might not
have been in the spotlight yet. Furthermore, we see this work
as an additional contribution to currently ongoing efforts to
standardize assessment and provide QoE models for cloud
gaming [16].

B. Subjective and Context Aspects of Players and Games

The following sections discuss all areas of the taxonomy,
supplemented with the necessary introductions into their re-
spective topics. And the remainder of this section provides a
brief overview of the aspects that focus on quality influencing
factors directly belonging to players and their environment,
as well as on factors belonging to an individual video game.
This is purely meant as on overview over these subjective and
context aspects and is in line with the approaches taken by
prior taxonomies (e.g. [17]). Further information that pertains
to the assessment of these factors is provided in Sections VI,
VII and VIII.

1) The Player as a Quality-Influencing Factor: Player
aspects and factors generally give context and meaning to the
subject, as they describe a player and their past experiences,
abilities, and preferences. However, this does not necessarily
imply that these factors are only relevant for subjective studies.
As video games are interactive applications some of these
factors will also influence application layer QoS, such as
the subjects’ skills and past experiences with video games

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

gameplayer

singleplayer,
cooperative, competitive

environment

genre

game mode

environment

preferences

physiological

expectations,
motivation

skill, knowledge

experience

game client game server

tick rate

delay mitigation,
authority, protocol

delay
compensation

performance

state
management

system, load,
player amount

system

game
engine

graphics quality, settings,
resolution

performance
framerate,
frametimes

netcode
synchronisation,
sending rates,
authoritychallenge, flow,

immersion, aesthetics
experience

gameplay
elements

economic,
social context

viewport, rules
interaction, mechanics

hardware,
OS

network

QoS

transport
protocols

Internet

access
type fixed, WiFi,

mobile

delay, loss,
throughput

[IIB] [IIB] [V, VI][III, IV.D, V.D] [IV, V]

subjective & context aspects

technical system aspects
network aspects

input

output

type, lag (mice, controller,
keyboard, touch, motion)

quality, type, resolution,
refresh rate, lag

local-only aspects

device
type consoles, handheld,

PC, mobile

input
messaging

video
encoder

video
streaming protocol, adaptivity,

resiliency

video resolution,
video framerate,
bitrate

remote-only aspects
(e.g. cloud gaming)shared aspects

playing style

generic,
game-specific

accessibility,
perception,
age, gender

intrinsic,
extrinsic

popularity, platform

design aesthetics, learnability,
narration, tempo, sound

FPS, RPG, RTS game loop,
synchronicity serialization,

protocol, lag
UDP, TCP,
QUIC

scheduler,
shaper, AQM,
traffic mgmt

Figure 2: Overview of factors and aspects of the gaming environment that influence and provide context to QoS and QoE
evaluations of video games. Concrete examples are depicted in a light gray font color. The provided section numbers direct to
the primary sections where the corresponding aspects are discussed.

in general. Thus, these factors influence both the measurable
player performance players have when interacting with a
game, but also influence their impression of the game when
doing so. However, the concrete relationship between player
performance metrics and QoE has not yet been exhaustively
investigated. This means, it is not clear if a high performance
metric automatically implies that the player had a good sub-
jective experience while playing, and vice versa. For example,
losing a game has often been associated with increased frus-
tration (see, e.g., [20]). But that does not describe the strength
of the relationship, or even if it is always the case nor that
frustration is necessarily a bad thing.

Among these influencing factors in our taxonomy, experi-
ences relates to specific skills regarding specific game features
as well as expectations on how certain game mechanics and
features should work and feel.

Physiological factors directly describe the player them-
selves. These are the typical influencing factors of concern in
subjective studies, e.g. age and gender, but include potential
physical limitations and accessibility needs as well. For ex-
ample, players with a form of color blindness might only be
able to properly engage with games that provide appropriate
accessibility options or players with repetitive strain injuries
might tend to avoid fast-paced games with repetitive inputs.
Thus, these physiological aspects can also describe how certain
game mechanics and features feel to a certain individual.

Preferences describe factors like the game types a player
tends to choose, or which game modes they prefer. Pref-
erences may even include finer details, like the controller,
typical graphical settings or type of gaming device they are
comfortable with.

Environmental factors contextualize a subject’s surround-
ings and, in our definition, also includes a wider range of
socio-economic factors. These may include their social con-
text, e.g. game recommendations by friends, economic factors,
e.g. decisions whether they buy high-end PC hardware, full
price games or prefer budget titles or subscription services,
and also their physical surroundings during play, e.g. whether
they play in their comfortable living room or mobile in public
transport.

Indie Action
Casual

Adventure

Singleplayer

Simulation

Strategy

RPG
2D

Atmospheric

Puzzle

Pixel Graphics

Story Rich

Free to Play

Early Access

Fantasy

Multiplayer

3D

Colorful

Cute

First−Person

Anime

Exploration

Violent

Arcade

Funny
Nudity

Sexual Content

Shooter

Sci−fi

Platformer

Horror

VR

Family Friendly

Retro

Relaxing

Gore

Great Soundtrack

Difficult

Sports

Female Protagonist

Open World

Action−Adventure

Survival

Visual Novel

Third Person

Co−op

Old School

Comedy

FPS

Racing

Shoot 'Em Up

Stylized

Massively Multiplayer

Realistic

Top−Down

Physics

Sandbox

PvP

Choices Matter

Mystery

Online Co−Op

Point & Click

Turn−Based

2D Platformer

Minimalist

Cartoony

Combat

Space

Dark

Controller

Adult Content

1980s

Psychological Horror

Multiple Endings

Management

Side Scroller

Building

Character Customization

Tactical

Linear

Hand−drawn

Local Multiplayer

Puzzle−Platformer

Action RPG

Design & Illustration

Replay Value

Magic

Turn−Based Strategy
PvE

Education

Rogue−like

Futuristic

Procedural Generation

Crafting

Logic

Medieval

Turn−Based Combat

Survival Horror

Rogue−lite

Hidden Object

Mature

Cartoon

3D Platformer

Party−Based RPG

Local Co−Op

JRPG

Zombies

Software

Romance

Turn−Based Tactics

Hack and Slash

Historical

Choose Your Own Adventure

War

Resource Management

Utilities

Interactive Fiction

Drama

Bullet Hell

Short

Dark Fantasy

Fast−Paced

Dungeon Crawler

Post−apocalyptic

Walking Simulator

Classic

Base Building

Top−Down Shooter

Surreal

Web Publishing

Stealth

RTS

Dating Sim

RPGMaker

Isometric

Movie

Memes Score Attack

1990's

Military Card Game

Narration

Text−Based

Third−Person Shooter

Emotional

Cyberpunk

Experimental

Music

Hentai

Board Game

Immersive Sim

2.5D

Nature

Abstract

Tabletop

Driving

Soundtrack

Action Roguelike

Robots

Fighting

Flight

Economy

LGBTQ+

4 Player Local

Tower Defense

Aliens

Dark Humor

Investigation

Detective

Clicker

Perma Death

Precision Platformer

Cinematic

City Builder

Competitive

Arena Shooter

Time Management

Team−Based

Real Time Tactics

Metroidvania

NSFW

Strategy RPG

Beat 'em up

Life Sim

Conversation

Beautiful

Thriller

TutorialWargame

Psychedelic

Psychological

DemonsTactical RPG

Moddable

Nonlinear

Level Editor

Modern

Automobile Sim

Destruction

Animation & Modeling

Lore−Rich

Dystopian

Runner

2D Fighter

Character Action Game

Twin Stick Shooter

Comic Book

Alternate History

Loot

Artificial Intelligence

World War II

Crime

Rhythm

Parkour
Supernatural

Match 3

Audio Production

Souls−like

Inventory Management

Grand Strategy

Game Development

Grid−Based Movement

Space Sim

CRPG

Mythology

MMORPG

Science

Dark Comedy

Collectathon

Philosophical

Idler

Cats

Lovecraftian

Deckbuilding

Open World Survival Craft

Card Battler

Split Screen

Noir

Video Production

Mouse only

Swordplay

Battle Royale

eSports

Dragons

Voxel

Addictive

Episodic

Software Training

6DOF

Real−Time

Blood

3D Fighter

Colony Sim

Steampunk

Mechs

Vehicular Combat

Mystery Dungeon

Parody

Class−Based

3D Vision

Farming Sim

Solitaire

Tanks

Gun Customization

Bullet Time

Political

Capitalism

America

Pirates

Time Manipulation

Word Game

Co−op Campaign

4X

Hex Grid

Agriculture

Automation

Ninja

Hero Shooter

Satire

Cult Classic

Hunting

Gothic

Trains

Trading

Conspiracy

God Game

FMV

Time Travel

Combat Racing

Hacking

Otome

Martial Arts

Photo Editing

Spectacle fighter

Sokoban

Real−Time with Pause

Remake

Naval

Dinosaurs

Mining

Creature Collector

Underground

Western

Programming

MOBA

Underwater

Dog

Politics

Trading Card Game

Looter Shooter

Vampire

Fishing

Dungeons & Dragons

Superhero

Illuminati

Touch−Friendly

Political Sim

Minigames

Cold War

Dynamic Narration

Faith

GameMaker

Quick−Time Events

Kickstarter

Asynchronous Multiplayer

Assassin

Party Game

Narrative

Soccer

Naval Combat

Auto Battler

Typing

Experience

Time Attack

Archery

Music−Based Procedural Generation

Documentary

Transportation

Heist

Cooking

Party

Football

On−Rails Shooter

Diplomacy

Immersive

Sailing

Trivia

Chess

Snow

Offroad

Villain Protagonist

Mod

Foreign

Mars

Horses

Gambling

Epic

Sequel

Action RTS

TrackIR

World War I

Sniper

360 Video

Boxing

LEGO

Crowdfunded

Transhumanism

Werewolves

Pinball

Gaming

Unforgiving

Nostalgia

Rome

Golf

Medical Sim

Motorbike

Jet

Ambient

Spelling

Farming

Bikes

Figure 3: Tag cloud showing the diversity of tags attributed
by users to games on the Steam platform. Font size scaled by
the frequency of the tags (most used tag occurred 57617

times). Data collected via https://steamdb.info/tags/.

2) The Video Game as a Quality-Influencing Factor: Video
games are made up of both technical as well as artistic design
choices. While the technical aspects will be discussed in
the subsequent sections and may explain significant portion
of a resulting quality impression, artistic choices still can
provide additional explanations and context for a specific
result. Take the game tempo as an example. Slow games might
be completely unfazed by high input delay or a low frame rate,
while a fast game might be nigh unplayable under the same
exact conditions. Thus, this warrants a separate discussion of
these game influencing factors in this section.

The genre—e.g. a Real-time Strategy game (RTS), First-
Person Shooter (FPS) or a racing game—can give a rough,
albeit subjective, categorization of games, but does not neces-
sarily govern more concrete factors pertaining to the games
design and gameplay. Genres also do not follow a unified
scheme on which aspects they describe, and range from
describing technical properties (e.g., the camera viewport),
economic aspects (e.g. "Indie" games) to artistic choices (e.g.
a strategy game). Additionally, many games may belong to
more than one genre. This is also highlighted by the diversity
of tags seen in Figure 3, depicting all the genre tags that users
associated with games on the Steam platform.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

The available game modes describe aspects such as whether
a game is played in singleplayer, cooperative or competitive
mode, but also the number of concurrent players in a game
session, as well as the difficulty and accessibility options the
game provides.

Next, the actual gameplay elements are a group of factors
on their own, and they describe which actions a player has to
perform to solve the game’s tasks and challenges, and which
tools are given to them to perform these. These are often also
dubbed game mechanics and may include elements of, for
example, movement, combat or puzzle solving.

This directly leads to the design decisions taken to im-
plement gameplay mechanics but also narrative and aesthetic
aspects of the game. Among these, precision represents the
temporal and spatial complexity of interactions within the
game, randomness governs the need to react to unpredictable
actions, and tempo measures the pace of interaction.

The classic experience factors describe one’s background
with a game and its design and gameplay elements—including
challenge, flow and immersion—and are by definition sub-
jective to a player and only captured by questionnaires or
physiological measures.

Finally, environmental factors include a variety of different
aspects, from a game’s current popularity—and partly related
to that, its potential appeal to new players—to its development
budget and length, to the availability on different video game
platforms and hardware requirements.

These insights into subjective and game-specific aspects are
picked up again in the measurement experiment (Section VI)
and subjective study sections (Section VII). Furthermore, these
factors seamlessly lead over to the system influence factors and
technical details of the game client in the following sections.

III. TECHNICAL GAME COMPONENTS AND MODELLING

This section provides a general understanding of technical
and system influence factors. It explains the basic systems
with their core components, introduces a simple model with
key aspects for its interpretation and how they are used for
communication between the systems. Thus, using the taxon-
omy’s designations this section covers the technical system
aspects of the game, client and server.

A. Core Components

Traditionally, video games were intended to be played on
a single platform, to be self-contained and perform all tasks
with no technical details exposed to the players. With the
introduction of general purpose computers, the underlying
platforms for video games began to diversify and games
could no longer be reviewed independently of the deployed
system. Further, when the Internet became available to a
large playerbase, game developers leveraged this means of
communication to enable multiplayer experiences over the
network. This step massively increased the complexity of the
games. They are no longer contained to a local system, but
they now depend on external components that not only operate
independently of the local core system, but also introduce
further variation to the performance. The current condition

of the network now has a direct influence on the perceived
gaming experience, hence it needs to be fully understood.

1) Local game client: The local game client—or generally
speaking, the local game system—always includes all input
and output components that directly interface with the player.
This includes general interfaces, such as mouse and keyboard,
gaming-specific interfaces such as game controllers, means for
communication such as microphone, headset and speakers, or
various other motion controlling interfaces. The output usually
is a monitor of various types, sizes, and other properties. Other
variants are hand-held systems with built in displays, and head
mounted displays that simultaneously capture the motion of
the head.

The game engine is the central piece of software that
continuously computes new game states and presents them
to the player. As the underlying systems may vary—different
systems and platforms offer different types of CPUs, Graphics
Processing Units (GPUs) and operating systems—the game
engine usually provides means to adjust the game’s graphical
settings and by this also the game’s performance, measured by
it’s frame rate. Such settings are necessary to ensure a good
performance to all players and their different systems. Finally,
if the game offers an online multiplayer mode, the underlying
connectivity and the corresponding netcode (umbrella term
for the concrete networking mechanisms implemented in a
game, see Sec. III-C) are also implemented in the game client
and represent important influence factors. Even if the local
system can provide sufficient performance for the central game
loop (cf. Section III-B), bad connectivity may still impact the
experience severely.

2) External game server: If the game does rely on network-
ing, the other side of the communication must be considered,
too. The communication partner is often a dedicated game
server that is responsible for a global game state computation.
As such, it contains similar components as the local game
client, without the graphics-related parts such as the GPU,
and without direct interfaces for local input and output.

3) Cloud rendering and streaming server: Recently, the
heterogeneity of local systems has lead to a trend that offloads
computationally intensive tasks to another, external system.
While the key components on the local game client remain the
same by name, the local system’s influence on the game perfor-
mance is reduced such that almost any system with adequate
input and output suffices. Instead, the actual client running
the game now reside within a cloud server, and is responsible
for game loop execution and frame rendering. It inherits the
local client’s system components and dependencies. The new
local client is now heavily dependent on network connectivity.
Even for single player games that were previously contained
to their local system, since all input and output actions need
to be exchanged between the local and remote system. The
individual responsibilities of these three core components and
their relations are covered in more detail in Sections IV, V,
and VI.

B. Basic Video Game Model
The discussion of the individual steps of the game loop

relies on a sequential model of processes. This model is

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

GSUIP

Thread 1

input
processing

game state
update

frame
rendering

FR

(a) Simple coupled model.

GSUIP

Thread 1 Thread 2

input
processing

game state
update

frame
rendering

FR

(b) Multi-threaded uncoupled model.

Figure 4: Basic models of a game engine’s core loop. Adapted
from [22].

introduced as a simple local queuing model here, and extended
by external components in later sections.

In general, any video game, regardless of its genre, can
be described as a discrete real-time simulation. A game is
represented as a continuously running loop during which
everything that is happening needs to be calculated, loaded,
rendered, and displayed. The time available to perform these
tasks at a high frequency is constrained by the need to display
the output in real-time. Exceeding the available time may
significantly reduce the playability and overall quality of the
game [21]. The specific tasks performed within a game loop
depend on the individual game and factors like the involvement
of network communication.

In the most basic scenario, covered in this section and
shown in Figure 4a—a locally rendered game with no network
involvement—the loop consists of three steps: input processing
(IP), game state update (GSU), and frame rendering (FR).
During the first stage, input from the user is collected by
querying attached peripherals. Based on user input and the
current, discrete game state, the update stage is responsible for
calculating the updated game state. This includes animation
states, actor behavior, and the game logic itself. During the
final stage, the updated scene is rendered and sent to a display
in the form of an updated game frame [22].

In the simple coupled model (as depicted in Figure 4a and
adapted from [22]) all three stages are executed sequentially
in a single thread. In general, one stage must complete its
computation before the information can be passed on to the
next stage. However, the sequential nature of the model does
not properly reflect the multi-tasking capabilities of modern
platforms and could quickly run into performance problems,
e.g., in fast-paced and technically complex games if those
were actually implemented this way today. To this end, in
order to leverage the multi-tasking capabilities of modern
hardware, some processes can be executed independently and
asynchronously and can have their own loop. For example,
the game state could always update periodically, irrespective
of whether there has been new input to process. Once there
has been new input, this information is passed along as soon

as the process is executed again. We refer to the latter as a
clocked process.

Hence, the multi-threaded uncoupled model shown in Fig-
ure 4b is a more adequate representation of modern game
systems, albeit still extremely simplified. It divides the loop
into multiple threads that execute the rendering stage on the
GPU asynchronously and independently of the CPU-bound
game state update. More detailed descriptions of these and
further models can be found in [22] and [23]. In the following
sections, we will extend this simple system model to adapt
it to different networking scenarios and include additional
components required to properly model modern, networked
video game systems.

C. Game Engine and Netcode

While it is impossible to cover every individual game’s
implementation, they are often based on generic game engines
[24]. These provide pre-built libraries for the most common
game functions. Most importantly, they provide (i) the means
for 2D and 3D world construction and rendering with an
underlying graphics library, (ii) interactions with this world
such as moving around, and underlying physics such as
gravity, (iii) serialization of world and object state, (iv) li-
braries that simplify or fully undertake sound, input, and data
management, and finally (v) pre-built functions and interfaces
that handle interactions with the network. The latter are often
summarily called the netcode. What the game engine cannot
provide is the actual game logic and how the game uses the
components provided by the engine. Thus, while the engine is
an influential factor, it is not solely responsible for the resulting
game’s behavior.

When reviewing the performance of games, those backed by
the same engine often show similar technical system behavior.
Previously mentioned configuration options are often provided
by the game engine, and can be passed through to the player.
However, it is common practice to adjust some functions
and to provide individual implementations, effectively replac-
ing the pre-built functions as required. For example, while
most engines already provide basic functionality for online
multiplayer many games still replace this with their own
implementation that is better tailored to their needs of, e.g.,
fast-paced shooters with many simultaneous players. For an
abstract understanding of the underlying behavior during per-
formance evaluation, knowing the applied game engine may
already be sufficient, but when individual scenarios involving
game-specific logic are being reviewed, a more profound
understanding of the individual game’s implementation and
logic is often required.

In particular, when reviewing the influence of the network
on a game’s performance, the underlying netcode and se-
rialization techniques become important factors. In slowly
paced games with a rich game state and game world, the
effective data rate of the connection may actively influence
the frequency at which actors and objects in the game load
and are synchronized. Therefore, the game must provide
efficient serialization techniques, and, e.g., only transfer state
differences and only the state of objects that are currently of

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

interest to the client. In fast paced games, mere milliseconds
of delay can severely influence the resulting game state at the
dedicated server. As a result, the netcode commonly includes
mitigation techniques for delay and packet loss. The netcode
is usually specifically designed for each individual game, and
the implementation often depends on the game logic itself.
For example, the game could prioritize the synchronization
of objects close to the player and synchronize distant objects
less frequently to improve performance. Fast paced games
would apply various mechanisms that ensure that an action is
performed as perceived by the local client. These mechanisms
include giving the client more authority over its game states
and let the client compute some game state updates by itself,
estimate delays to re-apply an action in a previous state as
intended by the client, or re-sending previous input commands
at later game loop iterations in case of packet loss. During
performance evaluation, the respective techniques and when
they are applied by the game logic should be known. A more
in-depth look at concrete networking mechanisms in games
offers the subsequent Section IV.

In the era of cloud gaming, the network influences the
perceived gameplay quality in a different way. Here, delay and
bandwidth have a more direct influence on the output latency
and quality. While the type of game often has a subjective
influence on the experience, it should be understood that
neither the game engine nor the netcode are directly related to
cloud gaming performance. Instead, the cloud gaming system
is a system separate from the actual game. It merely acts as a
redirector of the game’s inputs and outputs, similar to a remote
desktop system. A local client only records user inputs and
records them to a remote server where the game is running
and rendering its outputs. These outputs are encoded into a
video stream, sent back to the client and decoded there. Thus,
the influencing factors of the cloud gaming system apply in
addition to the game that it is running.

It is also possible to experience the effects of both cloud
gaming and game engine networking at the same time, when
multiplayer games are being rendered on a cloud server. The
above game loop models from Figure 4 will be extended with
these networking effects in the remainder of this paper.

IV. NETWORKING ASPECTS

The following section describes networking aspects of video
games, starting with general uses of networking in games as
well as aspects on different layers, outlining the direct as well
as indirect use of network communication during gameplay.

A. Networking in Games

Networking in modern games is crucial in multiple ways,
and the traffic generated during multiplayer gaming is influ-
enced by many aspects of the game itself as well as the sur-
rounding environment. Network usage in modern games can
be roughly divided into two blocks, which are discussed in the
following: (i) direct and (ii) indirect gameplay communication.

1) Direct gameplay communication: In a networked video
game, some parts of the game pipeline run on one or more
remote entities. Therefore, to be able to actually play the game,
it is required that each gaming client exchanges data with these
entities. Depending on the architecture, these entities can be
either game servers or other gaming clients. In the following,
the main types of gameplay communication will be described.
Please note that the involved gameplay communication highly
depends on the game type as well as the selected video game
network architecture. Naturally, this also influences the critical
QoS requirements for different game types using different
architectures. Details on architectures are given in Section V,
while Section VIII-B discusses the impact of game types.

Game input upload: The user interacts with the game by
issuing commands using an input device in order to influence
the game state. In a networked game, either the commands
themselves (e.g., [25]), or the resulting game state differ-
ences (e.g., [26]) have to be uploaded to the game server
or broadcast to the game peers. Basic input commands can
also be aggregated (e.g., [27]) or locally abstracted into higher
level commands before the upload, such as moves, events, or
changes to objects [28].

Game state download: Each pass of the game loop results in
the creation of a new game state. The game state incorporates
the decisions and inputs of each player subject to the game
logic. The server, as the authority over the global game
state, must synchronize this state back to all clients in a
serialized format. The state synchronizations can be performed
as standalone downloads (so-called snapshots) to each client,
or the server can first calculate the differences to the previous
state to reduce download sizes. The server can even present
each client with a different view on the global game state in
order to reflect, e.g., limited viewpoints of each client [29].
Upon reception by the client, the server’s game state will
be merged with the local game state, such that global state
changes are reflected when rendering the game output (e.g.,
[27]). If there are multiple game servers—or only equal peers
with no central server—responsible for a game session, the
different game servers also have to keep a consistent state
among them, and thus, need to exchange state information for
synchronization [10].

Figure 5a extends the previously presented local models
of the game loop with a game server component alongside
the necessary adjustments to the client that were previously
described. First of all, after the user’s input has been processed
locally, the input has to be packed into an input upload
message. This input message is transmitted to the game server,
which then incorporates that input (and those inputs of any
other clients) into the next periodic global game state update.
This new game state will be transmitted to the client, which
merges the new game state with its locally computed version
and renders a new frame. Note that multi-threaded uncoupled
models (from Figure 4b) can be extended accordingly by
inserting the same network components.

A special case is cloud gaming, also referred to as game
streaming. In general, game streaming can be conducted
between any two computers regardless of their location. This
then encompasses both streaming a game from a cloud server

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

IU

GSD

IP

GSPFRDL

latency
display rendering

of frame
game state
processing

game state
update

GSU

input processing

networkclient game
server

clocked process event based process

(a) Networked game loop with game input upload, game state
download, and game state processing.

CIU

FDL

IP

FDCDL

latency
display frame

decoding
game state
update

GSU

local input processing

networkthin client

IU

GSD

networkrendering server

CIP

cloud input processing

game state
processing

GSP

frame rendering
and encoding

FR

game
server

clocked process event based process

(b) Cloud gaming loop of a networked game; with game input upload,
remote rendering of frames, and game video streaming.

Figure 5: Gaming loops with and without game streaming. Colors indicate which device the processes belong to. Circles with
arrows indicate clocked processes, they run with a certain tick rate (e.g. 60Hz) independently of available input.

to a local device and streaming between two local devices. The
streaming client itself only is mostly just a video player and
input handler and forwarder. All game inputs are forwarded to
a remote rendering server which performs all resource-intense
tasks. The server processes the game state, and renders and
encodes the game video. The rendered video is then streamed
back to the game client, who receives the video data, decodes
and displays the game video to the user [4]. Figure 5b depicts
the respective game loop, with the additional cloud rendering
server highlighted in blue.

In multiplayer and online games, the rendering server—
that performs all of the graphics-intense client task—and the
game server—responsible for computing and synchronizing
the game state between all clients—will be separate entities.
After the game server has received the input uploads and
computed the state updates, the game state is sent back to
the rendering server, where it is rendered and encoded for
the client. In other, typically singleplayer, cases, there is no
separate game server. In this case the rendering server only acts
as a remote game client and directly processes the game state
itself. The discussion of game streaming will be continued in
Section V-D.

2) Indirect gameplay communication: Indirect gameplay
communication refers to any communication which is not an
integral, continuous part of the actual gameplay, but which
still is a prerequisite for playing the game or can interact with
gameplay communication.

Game delivery and distribution, which includes download-
ing a digital copy of the game, are often essential prerequisites
before a game can actually be played. Many contemporary
games additionally also feature the purchase and subsequent
download of additional Downloadable Content (DLC) or vir-
tual goods. Prerequisite communication in a game also often
includes authentication to a game platform, from which the
clients are redirected to the game server, as well as account
and session management. The required networking for this
kind of indirect gameplay communication typically relies on
standard Web technology for the communication with the
gaming platforms or servers, including the download of large
files to the user’s device for game delivery and distribution, the

authentication of users, and the encryption of exchanged data,
e.g., with Transport Layer Security (TLS). As these are already
well researched topics, which are not exclusive to online video
games, they will not be discussed in any further detail in this
work.

The participation of clients in a multiplayer match is often
managed by a separate matchmaking server. This matchmak-
ing server matches clients according to their preferences and
skill [30]–[33], allocates or starts a game server for their new
match, and finally redirects the clients to their assigned game
server, which will be responsible for all direct gameplay com-
munications. An important goal of matchmaking is to match
those clients together which have similar Internet connection
conditions (e.g. expressed as bandwidth and latency) to the
game server [34]. To this end, players can often pre-select
a geographic region, and the actual game server within the
region is selected by the matchmaking.

It might also be necessary to download level or world data
before the game starts, or even dynamically during gameplay
(e.g. seen in the 2020 Microsoft Flight Simulator). This might
cause waiting times until all clients have downloaded the re-
quired data. Depending on the game, that data can even be part
of the game state download performed by game clients (and
thus be a part of direct gameplay communication). However,
some architectures require additional connections to dedicated
world servers for obtaining level or world data, which inter-
leaves with the gameplay communications. During a running
game, game clients can upload analytics data to the game
server or dedicated analytics servers. This can include statistics
about the connection, such as link capacity and latency, which
can be used to improve the networking or mechanics of
the game [35], but also gameplay statistics, which can be
displayed or queried outside of the actual gameplay (e.g.,
highscore lists). Such statistics can also unlock achievements,
which in turn can trigger the download of data, such as
animations, unlocked game content, or virtual goods, which
can be used during gameplay. Some games also employ Digital
Rights Management (DRM) to prevent copyright infringement,
which can additionally require a persistent connection to an
authentication server (always-on DRM).

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

Finally, gameplay might also trigger the communication of
players via side channels, often with additional software for
messaging or voice chats, causing additional traffic [36]–[38].
Some players also stream their gameplay to other spectators
via live streaming platforms like YouTube or Twitch [39]–
[41].

In summary, as a prerequisite or in addition to actual
gameplay communication, several secondary applications may
be used by players that result in traffic not directly related
to gameplay. This can include text and voice communication
applications with which player communicate when playing a
game together. Such indirect gameplay communication also
has to be considered when analyzing networked online games,
since it might also immediately influence players’ behavior
and assessment of a situation.

B. Network Performance Influence Factors

With the distinction between indirect and direct gameplay
communication at hand we can now more closely scruti-
nize the impact of network parameters and influence factors
on video games. Indirect gameplay communication, such as
game and content downloads, text and voice communication,
or account and session management are closely related to
classical Internet applications. Hence, insights from research
regarding file downloads, VoIP, and Web browsing can largely
be applied [42]. For example, file downloads are known to
require high throughput but are relatively resilient against
delay, jitter and loss. VoIP and Web browsing, on the other
hand, are generally more sensitive to delay, while only requir-
ing a limited amount of bandwidth with the former suffering
especially under the influence of packet loss. Similarly, when
it comes to direct gameplay communication between a game
server and a client, studies have shown that, depending on
the specific game, latency, jitter, as well as loss generally
impact the gameplay quality. Bandwidth nowadays only plays
a minor role during gameplay, while the continuous gameplay
communication must be timely in its arrival, gameplay update
sizes are only marginal when compared to typical residential
Internet access speeds [43], [44], but may pose to be more
problematic in mobile networks.

1) Online Game Network Performance: In the following, a
more detailed look will be taken at what data is actually being
sent through the network. In general, three scenarios prevail
in modern games, which were already identified by early
Internet games [45]. All scenarios involve an input upload
(IU) step in Figure 5, as well as a game state download
(GSU) step. However, the mechanisms differ with regards to
which data is transmitted. First, the game client can simply
compute the game state locally and transmit the full game state
to other involved entities. This, however, requires additional
computation on the client side as well as increases the needed
upstream bandwidth. In return, the game server only has to
notify clients about small deviations in their local game state to
unify multiple clients. In the second scenario, clients transmit
only the player input, such that the interactions with the game
state are executed on the game server (Client-Server) or on
another game client (Peer-to-Peer (P2P)). This reduces the

complexity of the client but introduces additional latency, as
the client has to wait for the updated game state from the
server before being able to proceed. Additionally, the server
has to return the full game state to the client in order to
ensure consistency. In a third approach, only the portions of
the game state that is relevant to a client are sent back from
the game server. This comes with the additional complexity
of deciding which information is relevant and which parts
of the game state can be omitted. This task is commonly
called interest management. When it comes to modern games,
a combination of these mechanisms is often used to form a
trade-off between efficiency and complexity [46]. All three
scenarios have in common that the amount of data transmitted
by a single client is, by today’s standards, fairly low [45], [47].
Thus, this process is generally more sensitive to latency and
jitter while being very resilient against throughput fluctuations.

Reference [48] investigated the bandwidth requirements at
the game server and connected clients. They also evaluated
the latency to resolve game state inconsistencies for three
different architectures, namely, client-server, P2P, and P2P
with a central arbiter for detecting state inconsistencies. They
provided models for the bandwidth requirements and the
maximum inconsistency period for all three architectures. With
this, they identified both the large bandwidth requirement at
the game server in a client-server architecture, as well as the
large overhead in the P2P architecture to synchronize the game
state. Their proposed hybrid architecture with a central arbiter
combined the merits of both architectures.

Surveys of past online video game traffic studies are
available at, for example, [49]–[51]. In addition, the sources
and relevance of network latency, jitter, and loss have been
investigated in [10]. The authors of [11] and [52] commented
on acceptable latency in networked multiplayer games, stating
that it ranges between 0.1 s to 1 s depending on the game
genre. There, Real-time Strategy games were considered to
be less sensitive than First-Person Shooters. These numbers
were confirmed by past empirical studies [53]–[55]. But these
results are only applicable for a very narrow type of game in
a specific scenario and for a specific application layer metric.
In general, genres might not be as clear-cut as previously
assumed and do not necessarily govern the game’s speed.
Due to this, it is almost impossible to define generalizable
QoS requirements without considering game type, video game
network architecture, and required gameplay communication.
This issue becomes even more apparent when attempting a full
subjective assessment of the participants’ opinions. However,
these missing aspects would be important puzzle pieces on
the road to a more complete and generalizable QoE model for
video game. This notion will be picked up again in Sections
VII and VIII. More details on the impact of network conditions
on the game performance will be presented in Section VI.

2) Cloud Gaming Network Performance: When it comes
to cloud gaming, the scenario changes substantially as, in
addition to regular direct as well as indirect gameplay com-
munication, player input needs to be streamed to the ren-
dering server, which then has to return a high resolution,
high bitrate video with as little delay as possible [56]. The
upstream and downstream parts of this process are shown

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

in Figure 5b as CIU and FDL, respectively. Hence, cloud
gaming requires significantly more and different resources on
the server side compared to regular online gaming. However,
as both directions of this additional communication are closely
related to well established applications, insights from other
areas can be applied here. On the one hand, the upload of
player input is similar to the regular input upload already
discussed before as well as other latency-sensitive, low band-
width applications such as Web browsing or remote control
in industrial environments [57]–[59]. On the other hand, the
video download behaves similar to live streaming or video
conferencing, albeit with much stricter real-time requirements.
The impact of network characteristics on adaptive streaming
has already been studied in-depth in the past [60].

Finally, when it comes to the delay requirements, cloud
gaming providers may employ proprietary mechanisms to
reduce actual as well as perceived latency [61]–[63]. But such
approaches are still subject to research and evaluation of their
effectiveness. Naturally, network management solutions like
DiffServ [64] or Active Queue Management (AQM) [65]—
mechanisms to mark specific traffic types and reduce the queu-
ing delay in the network—can also be deployed to improve
QoS for gaming related network interactions within edge and
core networks. While the details of these network management
mechanisms are out of scope some future research directions
on this regard are presented in Section VIII-C.

The following section provides a more detailed overview of
client and server-based mechanisms that aim to improve the
perceived latency of players.

C. Networking Mechanisms within Games

When it comes to understanding the networking behavior
of video games, some aspects beyond the implementation
and usage of network connectivity need to be taken into
account. Games employ several application layer mechanics
that either directly influence the resulting network traffic or
change application layer behavior based on the current network
state, forming a feedback loop in which the game behavior
reacts to current network conditions, thereby influencing the
resulting traffic characteristics.

Similar to other network applications in which data protec-
tion, privacy as well as authentication concerns are highly rele-
vant, the encryption of network traffic is widely used for direct
and indirect gameplay communication. The encryption of net-
work traffic offers some additional protections against cheating
and manipulation of game state information. However, most
games do not solely rely on data encryption to ensure tamper-
proof gameplay, since cheating does not necessarily happen
during transmission, but at the game client’s system itself.
Instead, the aspect of game state authority is leveraged to
exclude the client from decision-making processes that could
be used to manipulate the game state. In environments with
authoritative game servers, the client still performs the local
game state simulation. However, the resulting game state will
be overwritten by the game state authority (i.e. the server)
if the states don’t match. If the local game client is not
authoritative on the global game state, many opportunities for

local manipulation are removed. This also means that any local
input has to be validated by the authority and is only then
included in the global game state [66]. If there is no central
authority (e.g. in a P2P approach) consensus between the peers
can be difficult to reach and slow to converge to a consistent
state across all peers [67]. This is often considered too slow
for fast-paced gameplay, nor resistant enough against cheating,
and may impose a significant traffic overhead.

The type of game itself is also highly correlated with
the occurring network traffic. The traffic patterns of slow,
round-based games without real-time interactions will differ
significantly from fast-paced, real-time shooters. The tick rate,
the rate at which a game client and server exchange state
information, generally describes the number of updates per
second and is provided in Hz. With slow, round based games
having tick rates as low as 1Hz and fast paced shooters
featuring tick rates of up to 120Hz, it is clear that different
games are more or less sensitive to jitter as well as packet
loss.

This sensitivity has lead to the introduction of several
mitigation techniques applied to diminish, or at least conceal,
the effect of network transmissions on gameplay features.
The following paragraphs provide an overview over the most
prominent mechanisms.

On of the earliest game state synchronization mechanisms
is called deterministic lockstep [47]. The basic idea is that
every game client executes the exact same code at the exact
same tick rate, with every input being directly shared between
clients. However, this can lead to the problem that the game
state update cannot be executed until a game client or server
has received all input uploads from all the players, which
causes the game to stall [68]. While this is not a large problem
for turn-based games, games with real-time interactions will
suffer. In addition, to make the game look and feel smooth, the
consequences of user interactions can be locally predicted and
presented at a higher frequency (client-side prediction) before
other players or the game server have acknowledged the input
and updated the game state [69], [70]. The drawbacks of the
deterministic lockstep mechanism are that it does not scale
well for many players [26]. An improvement called rewind
and replay or deterministic rollback was proposed, in which a
game client could also predict the remote players’ actions for
a more responsive gameplay. When the remote players’ input
uploads are received, they are compared to the predictions.
If there is a discrepancy, the game simulation is rewound
to the first incorrect tick. Then, the game client re-predicts
the inputs for each player based on the updated input stream,
and advances the simulation to the current tick using the new
prediction [27], [71]–[74].

As described above, the problem of synchronizing the game
simulation between all game clients increases with the number
of participating game clients. This issue can be solved by
introducing a single, central authority—the game server, or
host—which solely runs the game simulation, and thus, keeps
a single, unified game state. All game clients send their input
upload messages to the host, which executes all inputs and
updates the game state. Afterwards, the server sends back state
download messages to each game client. Since it might not be

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

time t

interpolation

client

time tserver
game state transmission

1 2

1′ 1′′ 1′′′ 2′ 2′′ 2′′′

(a) Client-side snapshot interpolation. The client interpolates its local
game state based on the game states received from the server, until a
new server state is received. This enables a higher rendering rate than
what would be possible if the client directly used the server state.

time tclient

time tserver

input transmission

lag compensation

1 2 3 4 5

1 2

1

1′

2

(b) Server-side lag compensation. Based on the client’s current delay
to the server the server assigns the client’s input messages to older
game states and recomputes all subsequent states.

Figure 6: Timelines of snapshot interpolation and lag compen-
sation mechanics.

feasible to transmit the complete game state, only snapshots
of the game state are sent in intervals, which contains all
or parts of the state of the game simulation. To further
reduce the snapshot size, geometry transmission [75], snapshot
compression [76] or other delta compression techniques can
be employed. Here only the differences to the previous game
state are transmitted [77]–[79]. Snapshots can be compiled in
such a way that they only contain the parts of the game state of
interest to a particular client. This interest management [80],
[81] allows the game server to send a subset of the game state
to each client, but requires a more complex management of the
state updates. This, combined with the fact that the authority
now solely resides with the server, removes a lot of potential
to cheat from the client [66], [69].

The game clients take those snapshots to reconstruct a visual
representation of the game simulation without running the
game state simulation themselves. But since the intervals of the
snapshot reception might be larger than the time between two
frames, a further technique, called snapshot interpolation, can
be employed. Hereby, the client shifts back its rendering time
and interpolates the game state between the two last received
snapshots, which adds constant but additional latency. Once
the rendering time progresses towards the last snapshot and a
new snapshot does not arrive in time, the game client has to
switch to extrapolation, which can cause a gameplay degra-
dation in case erroneous extrapolations have to be corrected
[26], [69], [82]. A depiction of the interpolation mechanism
is available in Figure 6a.

Typically a technique called lag compensation is employed
in conjunction, which takes into account the amount of in-
terpolation at the game client (cf. Figure 6b). This means,
with lag compensation, the game server does not apply input
actions to the current game state update. Instead, it takes into
account the simulation time at which the user performed the

actions, then rewinds the game simulation to the observed
game state at the client, applies the input actions, and from
there moves forward to the current game state. Note that
lag compensation allows for each player to run on their
own simulation clock with no apparent latency. However,
paradox situations might occur, especially when clients ex-
perience significantly different latencies to the game server,
e.g., the “shot through a wall”-inconsistency [69]. Finally,
state synchronization is a hybrid approach borrowing from
both deterministic lockstep and snapshot interpolation. The
idea is to run the game simulation not only on the game
server but also on the game clients. Here, each client again
sends input messages to the authoritative game server, and
the game server sends state download messages to keep the
game simulations synchronized. As the simulation runs also
on the clients, they do not have to wait for input from the game
server, but the game can progress locally, i.e., by extrapolating
from the last received game state. However, this can result in
only approximate synchronization, which might require some
effort to correct extrapolation divergence towards the global
game state of the game server [29].

Most importantly, there is need for mechanisms that enable
latency compensation or concealing [10]. A client will always
observe a delay > 0 between sending an input upload message
over a network to the game server or other game clients, and
receiving one or more corresponding game state download
messages. A simple solution, which was already presented
above, is client-side prediction, such that the consequences
of user interactions are locally predicted and rendered before
game state download messages arrive. Similarly, the input
actions of other players can be predicted and rendered before
the corresponding game state download messages arrive. This
mechanism is often called dead reckoning [83], when positions
and paths of moving objects are predicted. Both mechanisms
extrapolate from the game state, and thus, can be prone to
prediction errors. In this case, the extrapolation divergence
towards the global game state has to be corrected, which,
if perceived by the end user, might negatively affect their
experience with the game.

Finally, to further reduce the latency to and from the game
server, the game server itself can be moved closer to clients.
This is a use case of the emerging edge computing paradigm,
which allows the use of computational resources at the edge of
the network, close to the end user. However, the performance
of such mechanisms highly depends on the availability of
edge data centers and the geographic distribution of players.
To enable good matchmaking for a game, game servers are
often placed in the middle of larger population areas, as the
matchmaking process requires a large pool of eligible players.
To alleviate the problem, [84] presented a migration algorithm,
which allowed a player to choose a better server and migrate
the game state in the middle of a game. Considering world-
spanning multiplayer online games [85] applied core selection
to find an optimal node in the system for placing a virtual zone,
and correspondingly the players interacting in that region.
The authors of [86] considered first-person shooter games and
proposed a platform that determines where and when to move
game servers. A simulation-based performance evaluation of

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

edge server resource migration policies was conducted in [87].
Today, due to the disruptively long pauses during gameplay,
migrations are usually never performed during a running game
session in fast-paced games in practice.

D. Online Video Game Protocol Stack

Besides the way games use the network for various commu-
nication purposes, they also rely on specific network stacks and
protocols to optimize efficiency, resilience, as well as security.

A networked video game is, essentially, just like any other
type of networked application, it sends and receives data over
an IP network and wraps its data in an application layer proto-
col. Note that properties specific to layers 1 and 2 protocols are
out of scope for this manuscript, but it should be emphasized
that specific circumstances—like random access in a shared
medium, such as WiFi, or issues like bufferbloat—will impact
the delay-intolerant game communication in a negative way.
It should also be noted that many games outsource their
networking implementation to third party libraries provided
by either the used game engine or explicitly use networking
libraries like Valve’s GameNetworkingSockets1. This means,
even though there is no standardized game protocol stack,
many games still share similar codebases and behavior.

When it comes to transport protocols, TCP and UDP also
prevail for networked video games [88], including the usual
advantages and disadvantages. TCP has the advantage of a
persistent connection with congestion-controlled, reliable in-
order delivery. However, the retransmissions required for reli-
able delivery can introduce Head-of-line blocking—i.e., newer
segments are blocked by missing older segments that are still
unacknowledged—and with that additional delay and jitter,
two aspects detrimental for interactive real-time applications.
Thus, TCP is mostly used to handle data with less strict dead-
lines and in cases in which reliability is more important, i.e.,
indirect gameplay communication. For example, it is not suited
to transmit an immediate game state but possibly some future
world data or player communication. In contrast, UDP allows
for the fastest possible transmission in a lossy environment
without intrinsic reliability or ordering guarantees. If such
properties are still desired they can be tailored to the game
on top of UDP.

Looking at research, [88], [89] supported TCP for situations
in which occasional delay is acceptable, such as stateless
queries, updates, or slow-paced online games. The authors
of [45], [90] argue against the use of TCP for video games.
These papers agreed that for fast-paced games, in which occa-
sional lag is not tolerable, UDP should be used and required
mechanisms, such as the retransmission of lost packets, have
to be implemented by developers on top of UDP (e.g., [45],
[91], [92]). Chen et al. evaluated the TCP performance in
online games [93], and showed that TCP cannot perform
well for Massively Multiplayer Online Role Playing Games
(MMORPGs). The authors proposed guidelines for protocol
design and extended their work in [88], which investigates
more protocols, namely TCP, UDP, Datagram Congestion
Control Protocol (DCCP) and Stream Control Transmission

1https://github.com/ValveSoftware/GameNetworkingSockets

Protocol (SCTP) as well as other content-based transport
strategies. They found that their proposed strategies could
reduce End-to-End (E2E) delay and jitter significantly. More-
over, other transport protocols have been proposed in re-
search for networked video games as well. The authors of
[94] propose an energy-aware transport protocol for mobile
multiplayer games. And a TCP-like transport protocol specif-
ically designed for the transmission of game events has been
developed in [95].

Moving up the stack, the protocols encountered in video
game network communication start to differ from other ap-
plications. Unlike the Web, where HTTP and other stan-
dardized protocols are the defining elements, the gaming
landscape has no such widespread standardization. Instead,
developers often utilize third-party networking libraries and
frameworks for general data serialization, state replication,
and remote procedure calls such as Google’s ProtoBuf2 which
is used in popular titles like CounterStrike: Global
Offensive or DOTA 23. These tools make it relatively easy
to develop a custom communication protocol for each game
(e.g. [96]), but makes comparative analyses between games
more challenging.

There have been only scarce works in literature to analyze
the traffic patterns of video games and while the observations
made may not be entirely applicable to any game beyond the
one investigated, they can still give valuable insights into what
behaviors can be expected from video games, even though
most studies have to operate on encrypted traffic and are lim-
ited to identifying patterns. In addition, even a simple version
upgrade or a change in game settings, could entirely change
the observed behavior. Past examinations include Counter
Strike [97] and Overwatch [98] as well as several surveys
[49]–[51] that cover traffic analyses of additional games.
Further sources of information exist in the form of developer
documentation [25], [28] and open-sourced approaches [71].

V. VIDEO GAME NETWORK ARCHITECTURES

Video game network architecture designs can generally
be divided into two large categories, namely, client-server
architectures and P2P approaches, and while other, hybrid
approaches exist (e.g. [10], [99], [100]), these are less widely
spread and are seldom used outside of research. In the fol-
lowing, we provide an entry point into the research body of
network game architectures as well as the concept of cloud
gaming. Table I provides a summary of the references in this
section. Note that this table is designed to provide an index of
the respective literature, and does not contain results, e.g., with
respect to QoS or QoE implications of the presented architec-
tures. As the interactions between architecture, game type, and
gameplay communication of each game significantly impact
the presented results, the outcomes of the discussed works
are typically very specific to the applied methodology and
considered use case, and thus, cannot easily be generalized.

2https://developers.google.com/protocol-buffers/
3https://github.com/SteamDatabase/Protobufs

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

Table I: Taxonomy of research work regarding video game network architecture.

Reference Methodology Research focus

Client-Server Architecture

Bang’97 [101] Software Proposal Distributed Computing
Cai’02 [102] Implementation World partitioning, scalability
Fied’02 [103] Implementation Scalability, rapid development, system evolution
Hsu’03 [104] Implementation Scalability, interest management, game state synchronization
Ng’03 [105] Simulation Scalability
Wang’04 [106] Implementation Scalability, load balancing, cost efficiency
Chen’05 [107] Implementation World partitioning
Lee’05 [108] Simulation Resource allocation, game state synchronization, server selection
Assi’06 [109] Implementation Bandwidth, congestion, reliability
Ta’06 [110] Simulation Scalability, world partitioning, server selection
Glin’07 [111] Implementation Scalability, game state synchronization
Plos’08 [112] Implementation Scalability, responsiveness
Khan’10 [113] Simulation, Implementation Cheating mitigation, consistency
Prod’16 [114] Simulation Self-adaptation, load balancing, availability

Peer-to-Peer Architecture

Diot’99 [115] Implementation Game state synchronization
Min’99 [116] Simulation Load balancing for distributed server architecture
Gaut’04 [117] Implementation Latency, event ordering, cheating prevention
Iimu’04 [118] Implementation World partitioning
Knut’04 [119] Implementation Interest management, game state synchronization, world partitioning
Roon’04 [120] Implementation World partitioning
ElRh’05 [121] Implementation Scalability
Wagn’05 [122] Software Proposal Communication protocols
Yu’05 [123] Implementation, Simulation Scalability, interest management
Bhar’06 [124] Implementation Game state synchronization, scalability, latency
Hamp’06 [125] Implementation Scalability, robustness, load balancing
Hu’06 [126] Implementation Scalability, topology management, latency
Fan’07 [127] Implementation Scalability, robustness, interest management
Neum’07 [67] Discussion Challenges of P2P architectures
Chan’07 [128] Implementation P2P message overhead, framework validation
Fan’10 [129] Discussion Interest management, event dissemination, persistency, cheating mitigation, incentive mechanisms
Yhay’13 [130] Survey Overview of P2P solutions
Abdu’15 [131] Survey Scalability, reliability, responsiveness
Buyu’15 [132] Survey World partitioning, scalability
Liu’15 [133] Simulation Cost optimization, P2P feasibility

Hybrid Client-Server/Peer-to-Peer Architecture

Cron’01 [134] Implementation Game state synchronization
Baue’02 [135] Hardware Proposal Network Infrastructure
Muel’05 [136] Analytical Model Scalability, P2P and Client-Server feasibility
Mora’06 [137] Discussion Consistency, latency, game state synchronization, cheating
Yang’07 [138] Discussion Bandwidth, latency
Ali’09 [99] Survey Scalability, reliability
Cart’10 [139] Implementation Scalability, responsiveness
Ricc’12 [100] Discussion Research challenges
Wang’12 [140] Simulation Load balancing, scalability
Carl’15 [141] Simulation Gossip based interest management, integration of P2P and Client-Server architecture

Cloud Gaming Architecture

Schm’99 [142] Measurement Performance of thin clients
Huan’13 [143] Implementation, Measurement Comparison of performance to existing systems
Wu’14 [144] Optimization Development of control algorithm for routing and server provisioning
Carr’20 [62] Measurement Traffic Classification of Google’s Stadia cloud gaming service
Choy’14 [145] Measurement Latency for cloud gaming using general-purpose cloud infrastructure

A. Client-Server Architectures

All clients in a session of a client-server game send their
respective user inputs to a single logical game server to be
processed into a new session game state. The game server
then performs the game state replication to all clients. Ad-
ditionally, most client-server games compute a game state
out of their locally available information which does not
necessarily include all (or correct) information from other
players. An advantage of this approach is that there is only
one authoritative game state, namely the state managed by the

server. This substantially eases game state synchronization,
as the server’s state simply overrules any deviations clients
have computed locally since the server state replaces the
local state. The approach eliminates the need for any direct
synchronization or consensus protocols between clients.

In [146], different policies were outlined regarding the
control and location of the server with two main variants.
First, the server is installed together with the client and under
full control of one player. Several potential disadvantages
apply, including the susceptibility to local manipulation (i.e.,

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14

cheating), asymmetry of delay among players, and lower
availability, potentially leading to the remaining clients having
to migrate the game session to another server if the server is
not available any more. Second, and common to most larger
competitive multiplayer games today, the servers are hosted
and maintained by the game publisher or platform operator
in a data center. Moreover, while network connectivity is
obviously mandatory for online multiplayer games, many
singleplayer games have also begun integrating client-server
interactions, for example to simplify switching to a multiplayer
mode in a running session, prevent cheating, or for business
reasons. The client-server game architecture can also act as a
centralized solution for other game-related activities, such as
account management, monitoring, persistence, or partitioning
of the game world [147]. The authors of [137] discuss client-
server architectures for Massively Multiplayer Online Games
(MMOGs), in which several thousand players interact with the
game server.

While up until now only the use of a single server has
been mentioned, it should always be understood as a log-
ical (or virtual) server and in practice can be represented
by more than one physical entity. For this, either a single
game server is mirrored to several physical machines, or
functionality is split amongst different entities that synchronize
their state accordingly. This includes, for example, front-
end servers, matchmaking servers, or database servers. Such
virtualized servers can then be scaled up or scaled out, such
that running server instances always meet the current load.
Splitting responsibility is especially useful in the domain of
MMOGs. Many different approaches have been proposed and
used in practice. Such concepts include zoning, instancing,
and replication [114]. Zoning partitions the game world into
geographically disjoint zones, which are then assigned to
different servers (e.g., [102]). Instancing creates multiple,
independent instances of one zone and splits the players in
this zone between the instances. The instances can then be
run on different servers. Finally, replication distributes load
by maintaining copies of the same game world (or zone) on
multiple servers but distributes the clients between the servers.
Contrary to instancing, replication should not be noticeable by
players.

The following works are presented here to given an impres-
sion of the diverse directions research has taken in the past
for client-server architectures. An early architecture concept
was presented in [101], in which a remote server executes the
game logic and clients only render the graphics. The necessary
game data for this was to be pulled on-demand from a sep-
arate storage server. A completely distributed communication
architecture was used by the authors of [115] for their imple-
mentation of a networked multiplayer game. Reference [116]
investigated the issue of load balancing for dynamic change
of workload in a networked game. Their proposed algorithm
considered the geographical relationship among game units
and the short response time of frequent user interactions.
A review and analysis of current multiplayer online game
system architectures in 2003 was given in [104]. In addition,
the authors proposed a scalable, clustered server architecture.
Further, the authors of [105] conducted a performance study

on multi-server based systems for large distributed virtual
environments and discussed various implementation issues.
The concept of gamelets as a middle layer between monitoring
and communication to increase scalability was introduced in
[106], such that the logical partitions of the virtual world are
assigned to a gamelet for processing. Here, a single server can
then hold several gamelets at the same time.

A distributed algorithm was developed by [108] to select
game servers for a group of clients participating in a large
scale interactive online game session. Reference [107] showed
a locality-aware dynamic load management algorithm for mas-
sively multiplayer games. Considering the same type of games,
in [136], a scalability model was presented to analytically
compare the suitability of different network topologies for
certain classes of massively multiplayer game designs. A two-
phase approach to efficiently assign the participating clients
to servers was proposed in [110]. The goal was to enhance
user experience in interacting within virtual environments,
such as networked video games. Tackling the problem of
distributing the server part of networked games over multiple
servers, the authors of [124] presented a system to replicate
game objects over different server nodes. Also, in [109] an
architecture that supported zoning was developed. The authors
of [137] discussed how to distribute server resources over
several machines in massive multiplayer online games. A
middleware system was developed in [111], which distributed
the game state among participating servers, and supported
parallel state update computations, as well as efficient com-
munication and synchronization between game servers and
clients. The proposed system could be applied for the high-
level development of multi-server online games [112], [148].
Finally, the authors of [114] investigated an ecosystem for
autonomous, self-adaptive hosting and operation of MMOGs
on unreliable resources on commercial cloud services with
limited availability.

B. Peer-to-Peer Architectures

In P2P gaming architectures there is no central authority and
all game clients are equal. This should not be confused with
a client-server scenario where one of the clients exclusively
hosts the game, i.e. acts as the server. In full P2P scenarios
there is no server. Typically, a fully-connected network layout
is used and all clients maintain and update their own local
game state using their local inputs in addition to those sent by
other peers. The challenge is to ensure consistency in a real-
time manner between all peers in the absence of authority and
in the presence of network delays [35], [67], [99]. Specific
notions of P2P mechanisms for gaming are outlined in [100],
which include super peers, P2P overlays of distributed servers,
or particular neighbor-based connectivity types. It can be
advantageous that this architecture does not need a server, po-
tentially removing one round-trip from the networking delay.
Moreover, this architecture is robust without a single point of
failure. A game session can continue if one client disconnects
from it [67]. However, in a typical, fully connected scenario
with n peers, n(n+1)

2 active connections have to be maintained,
which increases the potential of failure and latency [35]. Some

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

15

works criticized this lack of scalability [135], while others
argued that P2P architectures were scalable, because each new
peer adds additional, shared resources to the session [67].

The academic literature has many examples of and surveys
about P2P game architectures, amongst others [122], [124],
[132]. The following works again serve to give an overview of
the breadth of works concerning P2P video game architectures.
A detailed description how the P2P model was used success-
fully in the early Age of Empires games is given in [35].
The game simulation was synchronized with the help of an
adaptive game speed, which dynamically changed the length
of the turn to keep the animation and gameplay smooth over
changing conditions in communication latency and processing
speed. The authors of [117] presented a protocol for cheat-
proof event ordering in P2P games, which reaches a playout
latency independent of network conditions and can adapt to
network congestion to optimize performance.

With regards to concrete architectures, the authors of [127]
propose a framework for a P2P network with super peers.
A P2P architecture was introduced in [128]. It provides a
client-server-style programming model, hiding the complexity
of setting up the P2P network among the clients. Another P2P
approach was described in [149]. It exploits specific game
knowledge to improve the mechanisms for requesting and
providing information to clients. P2P architectures can also
be adopted for massively multiplayer online games, which has
gained a lot of attention from research in the past [119]–[121],
[123], [125], [126]. Design issues and alternative approaches
were discussed in [129]. The works covered the dissemination
and persistence of the game state in large virtual worlds with
many server-controlled Non-Player Characters (NPCs) with
the additional goal of cheating mitigation. Considering the
demanding game type of MMOG, the surveys in [130], [131]
cover further P2P architectures for MMOG. More recently,
the authors of [133] conducted a simulative performance
evaluation of P2P protocols, and an architecture for fast-
paced MMOG was presented in [150] presented. Finally,
[151] presented formulae to compare client-server and P2P
architectures with respect to the required bandwidth.

While pure P2P game architectures have seen much aca-
demic research, they do not play a significant role in practice
today. Besides practical hurdles like NAT traversal, major
concerns relate to achieving consensus and state replication
in a constrained time and with regards to cheating prevention.
This can practically be solved with significantly less effort in
a client-server architecture.

C. Hybrid Client-Server/Peer-to-Peer Architectures

Many practical implementations employ hybrids of the two
previous concepts. In the following, some notable examples
are outlined, while more examples can be found in a survey
by Ricci and Carlini [100].

An important hybrid approach are relay servers [152], which
forward P2P packets between peers. Players can more easily
connect to them in environments where direct connections
might be prohibited, e.g. through NAT middleboxes. Relay
servers can also reduce traffic in P2P games. Instead of

distributing all messages to all other players, messages only
have to be sent to the relay server, which then takes care
of the distribution. Both [134] and [153] describe a hybrid
architecture with mirrored game servers. Another approach
was presented in [118]. It adapts multiplayer online games
to P2P architectures by constructing game server clusters
on a distributed hash table. Further, the authors of [138]
presented a P2P architecture that additionally used multiple
mirrored servers to maintain the game state. Other hybrid
P2P cloud architectures for MMOGs were proposed in [139],
[140]. Another approach, which integrates centralized and P2P
architectures, was discussed in [141], specifically in order to
support interest management. Reference [135] suggested to
deploy middleboxes in the ISP to intercept game traffic and
offload some game logic calculations to them. The authors
of [113] presented an adaptable client-server architecture for
mobile games, which dynamically decides where which parts
of the game logic are executed, either client-side or server-side,
reaching improved global consistency under high and varying
latency network conditions. Finally, the required bandwidth
and latency to resolve game state inconsistencies in different
architectures was investigated and modeled in [48].

D. Cloud Gaming

In the past decade a new type of service called game
streaming or cloud gaming has made technological advances
and has been become increasingly popular. Instead of running
a game locally, it is now rendered on a remote game client
and the finished output is streamed to the player’s end device.
At the same time, input provided by the player is streamed to
the remote game client for processing. This overall process
is generally not considered a video game architecture like
client-server or P2P, but rather as a different approach to
running and playing games. Any game that is available on
a local PC could therefore also be played via one of the open,
self-hosted cloud gaming systems (e.g. ParSec or NVIDIA
Gamestream). However, there are also closed cloud gaming
platforms, such as Stadia or PlayStation Now, which offer
only a small selection of games that also may not be available
on any other platform. This mainly depends on the business
model the operator has selected, c.f. e.g. [154].

Figure 7 illustrates the differences between online gaming
and cloud gaming. In cloud gaming, the local device only
acts as an input forwarder to a remote rendering server, which
implements a remote version of the game client. This server
forwards the inputs to and receives state updates from the
game server. It then renders the game video, redirects its
rendered frames into a video encoder, and transmits the stream
towards the local client, where it is decoded and displayed.
This means that the local device is not required to have
any significant graphics processing power or computational
resources to partake. However, it naturally comes at the cost
of additional delay, as shown in Figure 5b, and potential visual
quality degradation due to encoding, streaming, and decoding
as discussed below.

While the first commercial service providing cloud gaming
was launched as early as 2005, the technology only became

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

16

Input
Upload Game

Streaming

Game
Client

Online Gaming Cloud Gaming

Game
Server

Input
Upload State

Download

Rendering
Server

Frames

Video
Segments

Input
Upload

State
Download

Figure 7: Differences between online gaming and cloud gam-
ing.

popular with the first wave of commercial solutions like
OnLive (2010) [155] and Gaikai (2014) [156]. However,
these initial services were largely commercial failures due to
technical and qualitative limitations. They also garnered little
interest from consumers due to pricing and a limited selection
of games at the time. Recently, a second wave of commercial
services began to emerge, with PlayStation Now, Geforce Now,
Amazon Luna, Microsoft Xbox Cloud Gaming, and Stadia
being the most prominent installments of cloud gaming as of
writing this manuscript.

Apart from commercial services, many existing game plat-
forms also implement game streaming from a locally installed
copy on one device to another. This can not only be used
to stream the game from a more powerful computer to a TV
or mobile device, but streaming can often also be performed
over the Internet. Examples are Steam Remote Play, Xbox
Console Streaming, NVIDIA Gamestream, and PlayStation
Remote Play. The following paragraphs briefly survey the
ongoing research work into these services and systems.

Already several years before the commercial rise of game
streaming, [142] investigated the interactive performance when
streaming a video game on an early thin client setup in
a local area network. Also the authors of [157]–[159] pre-
sented early generic client-server systems for streaming 3D
graphics and virtual environments to mobile devices. Other
specialized systems for interactive video games were proposed
in [143], [160], [161]. Regarding commercial cloud gaming
platforms, two works [4], [162] described their architectures
and conducted first performance evaluations of the first wave.
Since then, a plethora of architectures and systems were
investigated and open research challenges were identified, e.g.,
[163]–[166]. A comprehensive survey was performed in [8].
The same group of authors additionally provided some very
insightful future perspectives in another article of the same
year [167], not all of which have proven to become reality
to this date. Finally, several recent works (e.g., [62], [168])
performed traffic analysis of current cloud gaming services.
These analyses revealed that individual games may differ in

their streaming traffic characteristics, such as the packet size,
inter-packet times, and load.

Further, the authors of [169] investigated the networking
behavior of Stadia, PSNow and GeForce Now and identified
the used protocols as well as performance requirements regard-
ing bandwidth and loss. They identified PSNow and GeForce
Now to be based on the RTP protocol while State relies on the
WebRTC API. Furthermore, in their tests all platforms could
cope with a packet loss of up to 5% before a degradation of
streaming quality occured.

Apart from those works, there is for the moment little
academic research that focuses on these latest services due
to the recency of the current, second wave of cloud gaming
services.

Two core aspects govern most technological decisions of
game streaming, namely the aspects of stream quality and
latency. The latter concern begins with the placement of cloud
gaming servers in order to keep the propagation delay below
a tolerable threshold. This represents a strong contrast to
most other cloud computing services, where E2E lag plays
a diminutive role and data center placement might be more
directed by factors like energy efficiency and multiplexing
gains. For example, [170] suggested a maximum distance of
1600 km from a data center for streaming fast paced games.
This would result in a round-trip propagation delay alone of
slightly below 100ms in addition to other lag factors, which
is considered too high nowadays, as most current services
operate at RTT ranges of about 15ms to 30ms. The authors of
[171] give some insights on this placement problem and how
it relates to other lag factors. The authors of [144] formulated
a constrained stochastic optimization problem to derive an
online control algorithm for request dispatching and server
provisioning. The same problem was tackled in [172] with a
linear program focusing more on the resulting QoE, and [145]
leveraged the edge computing paradigm to place additional
servers closer to the game clients.

When it comes to video streaming technology, cloud gaming
is most similar to traditional RTP-based video streaming on top
of unreliable but non-blocking UDP transport. Indeed many
current services simply use WebRTC (e.g. Stadia [62]), of
which RTP is a main component. Additional video bitrate
and quality adaptation mechanisms that adjust to current
network conditions can be employed by the rendering server
as well. These typically adapt the resolution, frame rate, or
the compression of the encoded and streamed video, and
can also be dynamically coordinated with the game’s current
output settings to achieve the best effects. For example, [173]
presented a system, which can dynamically select the video
frames and adjust forward error correction coding to achieve
optimal video quality in mobile cloud gaming. A study on the
video quality of commercial cloud gaming services of the first
wave was conducted in [162].

It is important to note that one of the main differences
of game streaming to on-demand video streaming services is
that content cannot be pre-encoded and distributed, e.g., by a
content delivery network. Instead, it is more similar to video
conferencing, in that the video content has to be rendered
and encoded right before the delivery. However, while some

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

17

broadcast delays are acceptable when passively watching a live
event, the interactivity of networked video games drastically
confines the amount of acceptable delay to a minimum. Con-
sequently, video rendering and encoding latencies have to be
controlled and minimized in game streaming, which especially
concerns the chain of video encoder, stream transmission,
and decoder. Furthermore, the game’s frame rate should be
as high as possible, typically 60Hz or beyond, with the
video encoder operating at the same frequency with minimal
coding delay [174]. Due to this low time budget, encoders
will operate at lower coding efficiency, thus producing either a
lower quality output or higher bitrate videos. Current services
recommend an available bandwidth of about 50Mbit/s for
1080p60 (Geforce Now) or 2160p60 (Stadia) video. Finally,
buffering of the streamed video must be avoided, apart from
a shallow jitter buffer. Thus, any disturbance that exceeds
this buffer will result in a stall on the last received frame,
and a subsequent skip to newly received frame to catch up
the time lost. This is in concept similar to the playback
interruptions in HTTP Adaptive Streaming (HAS), where it as
been deemed the worst quality degradation [60]. This means,
that adaptation technology has to ensure that stalling is avoided
by conservatively selecting the enconding bitrate of the game
video stream, which especially includes that motion and scene
complexity have to be considered [175]. In addition, the non-
blocking nature of UDP transmissions also helps in avoiding
stalls.

VI. PERFORMANCE EVALUATION OF GAMES

The previous sections have introduced numerous system and
networking components of games. But it might not yet be
immediately obvious how all these can affect the perceived
quality. To understand this relation, we now look at how these
components are used in games and in specific scenarios. The
key metric of this section is the total delay—or End-to-End
(E2E) delay—as it is known to have a large impact on the
interaction quality of games. This term subsumes the induced
delay of all system components, not just the network delay.
The effects of delay differ not only with its magnitude, but also
by its source. For example, network delay may cause severe
problems in some aspects of a game while being entirely
masked in another scenario. Therefore, the benefits and draw-
backs of different measurement methodologies, metrics, and
measurement points must be understood and applied correctly.
This includes a basic understanding of a game’s netcode, as
different games may behave differently and expose different
lag inducing components via the same measurement method-
ology. As an example, measuring just the network delay does
not catch delays caused by the game engine, graphics card,
operating system, input and output devices, or any intermediate
buffers. In this section, common delay inducing components
are discussed along with possible measurement points and
scenarios which typically include these components.

A. Delay-Inducing Components

One critical aspect of delay-inducing components is that
they are not all equally important, ordered in the same way, or

even present at all in every observed game and every system
that can be played on. Figure 8 shows the path of a user’s
input to the display of the results in different system models.
This path represents all components that together make up the
full E2E lag. Which model applies depends on the specific
game and requires knowledge about the game’s internals,
e.g., whether it applies a coupled or uncoupled model (cf.
Section III-B). These relations are also presented in different
scenarios. With and without a game streaming solution, and a
fully local game versus an external game state update server.

In addition, Figure 8 may also be used to derive mea-
surement points for various metrics that define a game’s
performance. Thereby, Figures 8a–8d illustrate the lag between
a button press and its corresponding information appearing on
the screen, while Figure 8e is used to derive measurement
points for the frame time4 in the uncoupled game loop model.
Note that most performance measures only capture part of the
entire delay, e.g., purely software-based measurements cannot
include delays caused by the display or input devices.

The following measurement points are used to classify
common measurement methodologies in literature. The in-
dividually considered delay components are presented in the
following paragraphs. While this description is self-contained,
similar models and illustrations have been presented in litera-
ture and may be consulted for further details [12, Chapter 3,
Figures 3.1–3.4].

a) Input processing (IP), (CIP): This includes the input
device [176], the interface of the device [177], potential delays
caused by wireless communication, software-induced delays
such as by the operating system [178], and the game engine’s
processing time. As an example, [179] collects and explains
the delays of various keyboard models. Delays of other input
devices are often of a similar magnitude.

b) Network delay (CIU), (IU), (GSD), (FDL): The net-
work delay includes the packet delay of the entire network
path, but also related components like processing delays, e.g.
by the operating system’s network stack, and engine-induced
delays, e.g. data serialization and packetization. It is present
in both game streaming (cloud input upload CIU, frame
download FDL) and in networked video games (input upload
UL, game state download GSD).

c) Game state update (GSU): This delay consists of the
CPU time required for the computation of the new game
state. The associated computation can be conducted locally
(Figure 8d), on a streaming server (Figure 8b), or by the
authoritative game server for networked games (Figure 8a
and 8c). Note that user input arrives asynchronously at the
game engine and does not trigger immediate computation,
thus any new input needs to wait until the ongoing game
state update cycle is finished before being considered for the
next one. This represents one of the aforementioned clocked
processes.

d) Game state processing (GSP): This type of delay is
only present in networked games with external game state
updates (Figure 8a and 8c) and consists of updating the

4A frame time is the time it takes to create and render a single frame, e.g.
a frame time of about 16.6ms would result in a frame rate of 60Hz.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

18

local

cloud

server

network

network

local input
processing

game state
update

cloud input
processing

game state
processing

frame rendering
and encoding

display
latency

frame
decoding

DL

CIP

IP

IU

GSP FR

GSU

CIU

GSD

FDC

FDL

(a) External rendering (cloud) and external game state updates (server).

local

cloud

network

local input
processing

game state
update

cloud input
processing

frame
decoding

display
latency

frame rendering
and encoding

CIP FR

DLIP

GSU

CIU

FDC

FDL

(b) External rendering (cloud) with cloud-local game state updates.

local

server

network

local input
processing

game state
update

frame
rendering

display
latency

game state
processing

IP

IU

FR DL

GSU

GSP

GSD

(c) External state updates (server) and local rendering.

local

local input
processing

game state
update

frame
rendering

display
latency

DLFRIP GSU

(d) Local rendering and state updates.

local

local input
processing

game state
update

frame
rendering

FR

IP GSU

(e) Example frame time (uncoupled model).

Figure 8: E2E lag for common scenarios (networked: yes/no, cloud: yes/no) and frame time model. Measurement points can
be defined between any two individual delay components Bi.

local game state based on the information received from
the authoritative game server. The current local view and
preliminary state predictions need to be merged with the
server’s authoritative state.

e) Frame rendering (FR) and encoding: The frame ren-
dering does take up a significant portion of the frame time.
In particular, it is the time spent by the GPU to render the
previously computed game state and scene. A new frame may
only be rendered if the previous frame has been completed,
potentially incurring additional delays. These frames may
either be displayed directly5 (Figure 8c and 8d) or encoded
into a video in streaming setups (Figure 8a and 8b). Depending
on the setup, the encoding may either be done in software, or
by a dedicated hardware encoder such as NVENC [180].

f) Frame decoding (FDC): This step is only necessary
in game streaming (Figure 8a and 8b). It consists of decoding
the received frame and preparing it for display.

g) Display latency (DL): Finally, the display latency
measures any delay after the frame leaves the local video
card and is being processed by the display. It is influenced
by the applied preprocessing steps, panel technology, and
the refresh rate of the display panel. Modern displays with
Variable Refresh Rate (VRR) can adjust their refresh rate to
match the rendering rate in order to avoid artifacts or VSYNC
delays, but also bringing another dynamicity into the display
latency consideration.

h) Frame time: In contrast to the other delays, the frame
time (or its inverse metric, frames per second) is not associated
with a specific input or action taken by the user. It describes
the time that is required to produce a new frame, with all
associated computations necessary. As indicated by Figure 8e,

5Directly may still mean storing the rendered frame in the video card’s
double or triple buffer before displaying it, further delaying the output but
avoiding potential artifacts like frame tearing.

this may include delay components from different actions, as
the game state update process (GSU) may happen in parallel
to the rendering process (FR) of the previous state’s frame.

Note that more than one scenario of Figures 8a–8d might
apply to an individual game, depending on the actual situation.
Some actions could be predicted or executed locally, bypassing
network components, in order to provide a smoother gaming
experience, while others may need to travel the full network
path before being displayed on screen.

B. Measurement Points and Metrics

Based on the models above, this section presents common
measurement points in the literature and discusses their ap-
plicability to the presented scenarios. In general, four major
measurement point classes can be derived, each allowing
to obtain various metrics representing different performance
aspects of their respective part of the system. These classes
are later used to classify relevant literature in Table II.

a) Full End-to-End (E2E) lag dfull: This first class mea-
sures all occurring delays, beginning from the local button
press up to the corresponding information being displayed
on the screen. It is applicable to all four presented scenarios
(Figures 8a–8d) and, depending on the scenario, measures
the sum of all their respective delay components (from input
processing to display latency). A high frame rate camera can
be used to capture both the moment of the button press right
before (IP) and the moment when the reaction is shown on the
screen right after (DL). For a controlled measurement error,
the camera speed should be at least twice as high as the refresh
rate of the display, as the maximum measurement error is
defined by the time between two camera frames. Often, the
input device is modified to visually display the moment of
button press via an external LED, e.g., hooked directly to the

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

19

mouse. Contemporary variants of this method omit the camera
in favor of a photoresistor affixed to the screen [181], or even
provide a full closed loop solution that connect a photoresistor
directly to a mouse6 or with additional functionality in some
modern monitors7.

b) Game streaming network measurements: This specif-
ically concerns network measurements for all applications of
game streaming, i.e. Figures 8a and 8b. The measurement
points revolve around the delay components (CIU) and (FDL),
with the actual points depending on the obtained metric.
When measuring the Round-Trip Time (RTT) dcloud, the time
difference between the moment before (CIU) and the moment
after (FDL) is reported. Many measurements approximate this
by simple ping-based RTT measurements, and thus omit
the remaining components (CIP) to (FR). Besides taking into
account the RTT as a mean delay (CIU + FDL) it is equally
important to consider its variance over time (i.e. jitter) since
it may also severely impact the experienced quality, even at
an otherwise lower mean delay.

In addition to raw latency metrics, packet loss plcloud plays
an important role in perceived gameplay smoothness. While
packet loss on the receiving end (FDL) is often perceived as
a visual degradation and artifacts in the output video stream,
loosing an input data packet (CIU) can be a more disruptive
experience as the expected reaction might not only be delayed
but skipped entirely. Thus, typical approaches to ascertain the
streaming video quality also apply here. Finally, the available
bandwidth or used data rate brcloud is an important metric,
and is highly asymmetric. On the receiving end (FDL), the
available bandwidth is directly related to the attainable quality
of the video feedback from the cloud server. Note that input
streams (CIU) typically consist of very frequent (e.g. 60Hz)
but small packets. Hence their overhead should be considered,
especially when redundancy is included to cope with potential
loss.

c) Game server network measurements: The connection
towards the authoritative game server (Figures 8a and 8c) can
be measured with regard to RTT dserv, i.e., mean delay (IU +
GSD), jitter jserv of this delay, packet loss plserv and required
bandwidth (or bit rate) brserv. Therefore, the measurement
points are located right before (IU) and after (GSD) to measure
the time difference between transmitting and receiving a
network probing packet. Once again, the actual game state
update (GSU) is commonly omitted and the reply is returned
directly in order to isolate the networking delay during these
measurements.

However, unlike in cloud gaming networking aspects, most
online multiplayer games apply prediction techniques and
predict preliminary game state updates in order to hide delays
where possible. Therefore, network delay does not necessarily
fully correlate with the subjectively experienced delay effect
by a player of the game. In any case, the network delay still
remains a crucial metric for a game’s performance, as any
such technique can lead to inconsistencies and rollbacks that
are more severe at higher delays.

6NVIDIA LDAT: https://developer.nvidia.com/nvidia-latency-display-
analysis-tool

7NVIDIA Reflex: https://developer.nvidia.com/reflex

d) Frame time measurements: Finally, frame times and
frames per second can be measured in any of the considered
scenarios (Figures 8a–8d). The appropriate measurement point
is right after the rendering process (FR) has finished. The
frame time measures the time between two consecutive unique
frames, as opposed to comparing the timings of different
measurement points like in the other metrics. However, it does
represent more than just the pure GPU rendering time. It is
influenced by all delay components that are located on the
same machine as the one conducting the rendering process
(FR), except for the external display (DL), i.e., (CIP), (GSP)
and (FR) in Figure 8a; (CIP), (GSU) and (FR) in Figure 8b;
(IP), (GSP) and (FR) in Figure 8c; and (IP), (GSU) and (FR) in
Figure 8d. Depending on the engine’s game loop model, these
delays influence the frame time differently, e.g., for a coupled
model (Figure 4a) it could be given by their sum (IP + GSU
+ FR). In an uncoupled model, such as in Figure 4b and 8e, a
game’s frames per second are usually bound by either the CPU
or GPU, resulting in a frame time of max (IP + GSU,FR).
Some games are able to report the individual time portions
of the CPU (IP + GSU) and GPU (FR), e.g. DOOM (2016),
making them great candidates for in-depth measurements.

It should be noted that, while frame times and frames per
second are the inverse of each other, the latter is often reported
as a mean value over a larger period of time, e.g., an entire
second. While this can still reflect the mean performance of a
game, it fails to properly record stuttering or periodic hiccups
in the rendering process, e.g., periodically skipping frames due
to VSync [182]. Therefore, a time series of values or summary
statistics beyond the mean, especially the standard deviation
and the 99% or even 99.9% percentile, are the preferred
approach to report frame times and frames per second.

A selection of related literature and community efforts
that cover some of these measurement points is presented in
Table II.

C. Lessons Learned

When conducting performance evaluations, including objec-
tive measurements and subjective evaluations, it is necessary
to clearly communicate the applied measurement points and
the type of observed scenario. Many of the described influence
factors of the taxonomy are only visible at certain points of
the chain, and could thus be overlooked if the measurement
point is not carefully selected and known. Some delay com-
ponents appear in multiple forms, such as networking and
processing delays. Most importantly, the scenario should be
properly identified and mapped to the corresponding model
of Figure 8. Special care needs to be taken when considering
delay mitigation and concealment techniques, since they are
only visible in the full E2E lag, but also introduce speculative
and even subjective components that can be very sensitive to
the exact experimental design.

Some works listed in Table II have not mentioned their
circumstances explicitly and fully. As such, only the measure-
ment points were able to be identified clearly. But in many
cases, the exact involved components and system parametriza-
tion of the study remained unclear, as this would require to

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

20

have knowledge of the game’s internal makeup (e.g. engine
and programming). As a result, the surveyed performance
evaluations are often inconclusive and open to interpretation
with respect to some network performance requirements. In-
dividual results sometimes contradict each other, possibly due
to being based on different games—even if they are of the
same genre—or slight variations in overlooked or unreported
influencing factors of the respective experimental design.

In general, future evaluations should identify and control
their selected scenario and measurement points as accurately
as possible. More often than not, it might be necessary to
measure the full E2E lag in order to not overlook any critical
influences. In any case, evaluations should provide a com-
prehensive description of all involved components in between
these measurements, while avoiding game- or genre-specific
wording. To facilitate this, this section offers a common ter-
minology of components and measurement points with which
future works could be better compared. What’s still missing
now is to put these directly measurable effects into relation
with the subjective effects that players experience. While
subjective assessment will be covered in the next section,
the mapping of QoS to QoE aspects for gaming is a more
challenging topic and still mostly a matter of future work (and
further discussed in Section VIII).

VII. SUBJECTIVE USER STUDIES

In this section we cover metrics and methods commonly
used in subjective gaming user studies, beginning with
network-related metrics that describe a negative impact on
a video game. After that, we examine how QoE and in-
game performance are affected when typical application layer
problems occur.

Each user has different expectations when it comes to the
perceived quality of a game subjected to certain additional
influencing factors, as discussed in the taxonomy of Section II
and with specific examples given in Section II-B. Some in-
teraction effects can be described by the timeliness, precision,
and predictability of the actions a player can execute in a game.
Such player actions are impaired through lag, with specific
games, and even specific actions within the same game, being
more or less susceptible to lag. For example, competitive
First-Person Shooters can be severely affected as they often
benefit from quick reactions and good hand-eye coordination.
But even in such games, lag might be more noticeable for
some actions (e.g. targeting and shooting) than for others (e.g.
unhindered movement). And it also depends on the specific
game and how its actions are designed and implemented. As
described previously, the general lag behavior can be derived
and modeled with extensive measurements and gives insights
into the interactions that contribute to a lag profile of various
actions [98], [174]. However, this does not necessarily lead
to a full understanding of the subjective experience under the
given conditions as a multitude of additional influence factors
exist as depicted in our taxonomy in Figure 2.

One attempt to summarily describe aspects of the subjective
experience is by investigating user engagement, which has
been the topic of several video game studies. An initial

description of user engagement in video games is given in
[206]. Here, the authors describe characteristics that motivate
or engage someone to play, and continue playing. They
conducted a user questionnaire with which they investigated
which structural video game characteristics are important to
players. According to [209] the engagement process consists
of four stages: the point of engagement, the period of sustained
engagement, disengagement and finally re-engagement. The
extent of which different video game characteristics can be
leveraged to predict user engagement and happiness has been
studied in the past [207]. The authors came to the conclusion
that audiovisual properties as well as punishment mechanics,
like losing a life or having to start a level over, positively
contributed to player happiness and the achievement of a
flow state. Flow can also be described as an aspect of
engagement, as a phase in which players achieve maximum
immersion [208], [210].

The authors of [208] conducted a questionnaire which
consists of 19 items to self-assess video game experiences and
engagement. It has been suggested to be used as a measure-
ment of video game engagement. Other studies suggested that
engagement directly impacts happiness [211]. Finally, a survey
on engagement and classification of engagement factors along-
side consumer experience aspects has been conducted in [212].
In a follow-up study, the authors found that consumers first
engage in playful consumption and gain experience from it,
which leads to increased engagement [213].

Questionnaires have generally been an important tool to
investigate the subjective natures of QoE and engagement for
video games. Several works, including [208], [214]–[217],
tackled the design of such questionnaires. Past works have
demonstrated the challenges in their design. Questionnaires
would need to define specific subjective factors they want to
identify (e.g. flow, immersion, or frustration), and then design
questions that can be unambiguously attributed to a single
factor. The questions also need to be easily comprehensible
by the subjects and need to be able to be mapped to a specific
game in a specific experimental scenario (i.e. a post-hoc or
intermittent approach). All of these challenges combined may
explain why there is no one-size-fits-all solution available yet
that encompasses all subjective aspects for gaming.

And the complexities of capturing all subjective impressions
with questionnaires can also explain why it is often more
promising to shift the investigation to player performance
metrics, even though there are no reliable all-encompassing
mappings from those player metrics to subjective experience
developed yet. Therefore, the following sections highlight such
works that investigated the influences of specific QoS factors
on player performance metrics and QoE.

A. Delay Investigations

Inevitably, network impairments will be perceived by the
player as delay, delay variation or stuttering. The authors of
[202] investigated the influence of delay on various games
using subjective and objective metrics. They concluded that
both player performance as well as perceived quality decreased
with increasing delay. A further user study performed in [201]

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

21

Table II: Metrics observed in important measurements and user studies on video games. The technical measures are defined
in Section VI-B. The individual columns denote what features the individual study investigates. ’d’ columns represent delay
investigations, ’j’ represents jitter, and ’pl’ and ’br’ denote packet loss and bitrate investigation respectively.

Reference dfull dcloud dserv jserv plcloud plserv brcloud brserv Frame
rate

MOS Player
perf.

Play
time

Special focus

Batt’19 [183] ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ various parameter studies with dfull
Zhao’17 [184] ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ head mounted display
Casi’15 [178] ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ no external camera, only mouse input
Ivko’15 [185] ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ lag compensation
Ware’94 [186] ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✘ VR, reaching behavior
Schm’17 [187] ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ scenario classification
Sack’16 [188] ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ cloud gaming
Beye’15 [189] (✔) ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ cloud gaming, visual degradation, EEG

power
Jars’13 [190] ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ cloud gaming
Clin’13 [191] ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ cloud gaming
Iqba’21 [192] ✔ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ cloud gaming, delay components
Graf’21 [168] ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ cloud gaming
Dome’21 [169] ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ cloud gaming
Lind’20 [193] ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✘ cloud gaming
Lee’12 [194] ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ command heaviness, fEMG potential
Jars’11 [7] ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ cloud gaming
Sliv’15 [195] ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✔ ✔ ✘ Steam in-home streaming, image qual-

ity
Clay’19 [196] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✘ player accuracy
Hoan’17 [197] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ MOBA
Beye’14 [198] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ display size
Clay’10 [199] ✘ ✘ ✔ ✘ ✘ ✘ ✘ (✔) ✘ ✘ ✔ ✘ game phases, player actions
Bred’10 [200] ✘ ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ connection type, FPS
Chen’08 [44] ✘ ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ MMORPG, large scale, player depar-

ture
Ries’08 [201] ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ MMORPG
Chen’06 [43] ✘ ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ MMORPG
Dick’05 [202] ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✘ survey of expectations
Beig’04 [203] ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ FPS
Nich’04 [204] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ sports game
Shel’03 [54] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ RTS
Pant’02 [53] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ racing game
Clay’07 [205] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘ FPS

Wood’04 [206] sound, graphics, background / setting, use of humor, brand assurance, character development,
play time, duration of game, rate of play

structural characteristics

Leff’16 [207] happiness, social, reward, punishment, narrative, manipulation, presentation, flow, psych.
absorption, presence, immersion

structural characteristics, happiness

Broc’09 [208] absorption, flow, presence, immersion, engagement high school students

showed a correlation of QoE to the delay as well as the jitter
in World of Warcraft. In this case the total delay had
more impact than the delay variation. While looking at First-
Person Shooters, the authors of [191] found a strong impact
of the delay and packet loss on player experience. Ivkovic
et al. [185] quantified the effect of local latency, including
input, rendering, and output devices. They found that as the
latency increased, the ability of the study participants to track
targets decreased. Their results were qualitatively similar to a
much earlier study [186] on the difficulty of reaching for static
objects on virtual reality displays, conditioned to the virtual
object’s size and the motion-to-display lag.

Concerning cloud gaming, Chen et al. [162] already per-
formed a suite of measurements on the first generation cloud
gaming services and proposed a novel measurement method-
ology to assess the QoS—and especially the latency—of cloud
gaming services. The same group of researchers also devel-
oped a testbed environment for cloud gaming [143], which
can also be very helpful for delay investigations and other
metrics. In another work, the authors of [218] give insights on

delay requirements of streamed games and the implications
for data center distance as well as placement. In [7] Jarschel
et al. identified influence factors on the subjective quality
of cloud gaming through a user survey for games in three
different categories (slow, medium, fast games) that have been
subjected to worsening QoS parameters. Downstream packet
loss and delay was noted to be especially problematic for
achieving good quality. Similarly, the authors of [44] observed
a correlation of players that quit playing an MMOG with
deteriorating QoS. A recent study [193] focused on faster
and multiplayer games specifically affected by deteriorating
network conditions. They find that the concept they dub
’frame age’ (a portion of the total E2E delay) is highly
correlated to the experienced quality. In 2021 the authors of
[192] investigated three commercial cloud gaming services.
Their novel evaluation approach was able to give estimates
on specific game delay components, thus separating, e.g., the
network delay from the cloud gaming server processing time.
Depending on the game, the cloud server processing time was
often much larger than the network delay. Additionally, the

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

22

authors were able to demonstrate the bitrate adaptations these
services perform under constrained conditions.

Many evaluation approaches also focus on in-game objec-
tive performance metrics, like highscores or task completion
times. For example, a user study performed in [43] observed
a decrease in the playing duration in an MMOG when the
network QoS degraded. The authors of [52] categorized player
actions and their relationship to latency with special regards
for the precision and deadlines of actions. In the genre of
Multiplayer Online Battle Arenas (MOBAs), [197], [219]
measured the effects of lag on the player’s ability to hit targets
in League of Legends. The authors of [220], [221] inves-
tigated lag in DOTA 2 using a novel crowdsourcing approach.
Further, Claypool and Claypool [205] noted the influence
of network QoS on in-game actions and specifically look
at player performance in first person games. They observed
significantly worse player performance in a degraded network.

As a further in-game performance metric, the “kills per
minute” of players in the First-Person Shooter Quake 3 were
investigated by [222]. The study observed a steady decline of
this metric with increasing network delay. QoE measurements
from a custom-made racing video game again showed a strong
dependence of the player’s performance on the delay and
suggest that a network RTT of 200ms is barely usable and
500ms completely unusable [53]. Finally, the authors of [200]
found a strong and negative influence of high delay on the
player’s performance as well. Contrary, Beigbeder et al. [203],
looked at player performance in Unreal Tournament
2003 in a controlled in-game environment, and found almost
no influence of increased delay. Player performance remained
steady even at delay values of 200ms, indicating that the
impact of delay on player performance varies between games
and scenarios. Other influence factors besides the networking
delay may be in play here, but were not investigated. This
is supported by works like [174], that indicate that the net-
working delay does not necessarily need to be the dominating
component of the total delay. Other factors, like the framerate,
can play an equally important role and can not be neglected
in delay investigations.

B. Jitter Investigations
The authors of [202] investigated the impact of jitter in First-

Person Shooter (FPS) and racing online games by creating
random delays for each packet between consecutive packets
without correlation. They found that increasing the jitter led
to a decrease in the Mean Opinion Score (MOS), but that its
impact was much weaker compared to increased delay values.
Similarly, [201] investigates the impact of jitter on the MOS
for an MMORPG. They conclude that jitter is a performance
indicator for MMORPGs and give it a higher negative impact
factor in their QoE model than delay. A stronger impact
of jitter was also observed on user departure behavior in
an MMORPG by [44]. In another departure rate model for
MMORPGs, [43] includes jitter as the highest impact factor
in a regression equation. The authors of [200] studied the
influence of different factors on the performance of games in
automated tests without involving actual players. They found
that jitter has little influence on the game score.

C. Packet Loss Investigations

In their large-scale study on player behavior in an
MMORPG, [43] and [44] showed that packet loss in both
directions, client-to-server and server-to-client, has a high im-
pact on player departures. The authors of [203] investigated the
impact of latency and packet loss in Unreal Tournament
2003. In their environment they did not detect an effect of
packet loss on the accuracy or the overall score of players.

Some studies specific to cloud gaming came to different
conclusions than what has been noted for packet loss in regular
online gaming. For example, the authors of [7] and [190] noted
strong video distortions even under low packet loss. Packet
loss had the highest impact on QoE among all parameters in
the study and was especially noticeable in slow and medium-
paced games. Similarly, Clincy and Wilgor [191] observed that
increased packet loss caused severe stuttering and led to a
decrease in QoE when streaming a First-Person Shooter.

D. Bitrate and Video Quality Investigations

The bitrate, and other derived video quality metrics, are
only applicable to streamed games. Locally rendered games
will always just display the reference image (subject to the
selected graphical settings in the game) without any visual
degradation. The following works give an overview of past
works that concern video game video quality.

The authors of [188] investigated the impact of the bitrate
on the QoE in a cloud gaming system. They found that cloud
gaming is a bandwidth-intensive application which requires a
certain minimum bandwidth to maintain an acceptable visual
quality. However, increasing the bandwidth beyond a certain
threshold did not lead to a significant increase in QoE, as
the QoE in an interactive environment is influence by more
than just the visual quality. Importantly, they compared the
QoE of actively playing participants to passive spectators
and found that the passive viewers were more critical about
video quality. This particular insight is often repeated when
comparing passive to active media consumption.

The impact of the stream bitrate on the QoE was also
investigated for Steam’s In-Home streaming [195] in 2015.
The authors found a significant correlation between the video
bitrate and the perceived graphics quality, but did not find any
correlation with overall QoE or player performance in both a
first person shooter and an action RPG. The authors of [189]
examined Electroencephalography (EEG) readings in addition
to a questionnaire to determine the impact of various influence
factors on the QoE. Their test subjects were instructed to play
with different video qualities settings (stated as 1Mbit/s and
(10Mbit/s). They found that playing in low quality led to
a slightly more tired state than high quality. In high quality,
subjects experienced higher flow and immersion, and felt more
competent and more pleasure. It should be noted that these
values are much lower than what is considered standard in
today’s cloud gaming services, which currently stream with
up to 50Mbit/s. A further overview of further QoE taxonomy
and influence factors especially for mobile games is given in
[198].

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

23

E. Application Layer Investigations

Besides networking-related properties, there are several
game-related properties to keep in mind. The frame time
or frame rate is an example of a key property described in
Section VI-B, as it also interacts with and influences the E2E
delay. Factors like display resolution, or even more abstract
concepts like descriptions of the difficulty or tempo, can be
key properties in subjective studies. Many games, especially
PC games, also allow to change their graphical fidelity. Not
only can this directly influence the enjoyment as visually
more impressive games may give more enjoyment, but it
also interacts with the performance and cloud gaming bitrate.
Selecting higher quality settings usually results in higher
visual complexity as well, in turn requiring a higher bitrate
to maintain the same quality. Changing settings may also
alter the game’s framerate, and thus may introduce additional
temporal influences that need to be considered. Preliminary
investigations on this topic were conducted in [175], [223].

As an example, Slivar, Suznjevic, and Skorin-Kapov [195]
found that the frame rate had a significant impact on the
QoE in their experiments with Steam In-Home streaming.
Other works in this area combined the examination of user
ratings with questionnaire-based assessments to study diverse
properties like detection, quality acceptance, difficulty, or
retention and annoyance [187], [188]. A low frame rate led
to a reduction in QoE here as well.

F. Lessons Learned

Due to their interactive nature, the experience of video
games naturally relies heavily on subjective factors and the
involved players. However, study results are influenced by
not just these factors. On the contrary, other game-related,
system or network influence factors have been shown to be
equally influential, and should be considered for study design
and during evaluations.

Furthermore, the impact of specific influence factors varies
heavily, and depends on the specific study, the pursued goal
as well as the specific game itself. For example, technical
parameters such as tick rate and network delay may have
negligible influence when it comes to slow, turn-based games,
but are considered crucial key performance indicators for fast
and competitive real-time games. Hence, a classification of the
specific use case needs to be performed to identify relevant
parameters for the goal of a measurement or user study.
Studies should then be based on a diverse set of contemporary
games that represent a cross-section of game influencing
factors. For example, games of varying genre, tempo, modes,
gameplay elements. But also games with different technical
properties, from their graphical output and performance to how
they implement network interactions.

Studies need to further make informed decision on their
selection of metrics. Objective metrics that can represent visual
and interaction quality, and assessment approaches that can
capture the subjective experience related to that, such as well
designed questionnaires. And finally, the interactive nature of
games makes it all the more important to be able to accurately
describe the players and their backgrounds—and include a

diverse set of participants in the study—in order to put study
results into perspective. Such experimental design can be
performed with the help of insights gained from performance
evaluations described in Section VI and from the influence
factors described in the overall taxonomy throughout this
manuscript. Initial approaches to testing guidelines are also
available in standardization, e.g. in the form of ITU-T P.809
[19].

VIII. FUTURE RESEARCH DIRECTIONS

Before concluding this work, the following paragraphs
summarize open research topics in the area of video games
based on the observations made in this manuscript. While
some of the following items may have no prior appearance
in the research in this field, others need to be revisited in
regular intervals since the landscape of video games is quickly
changing, and previously observed characteristics, expecta-
tions, and insights may not hold true anymore when taking
recent developments and new games or services into account.

A. QoS and QoE Measurements, Studies, and Models

The continued identification and assessment of general and
game-specific video game quality metrics, player performance
indicators, and subjective experiences remains crucial in fu-
ture work. This concerns both the assessment of subjective
experiences using questionnaires, interviews, or physiological
measures as well as application layer QoS metrics. For the
latter, popular examples from past research include the task
completion time or game-specific scores under the influence
of degraded QoS parameters. This is a direct continuation from
the approaches and research works described in Section VI.
Continuously validating and refining the results of previous
studies with contemporary video games and new video game
platforms that reflect the current state of the art is also an
important aspect, especially when considering the age of some
of the works referenced in this manuscript.

Of equal importance is the establishment of best practices
and guidelines for experimental measurements and subjective
studies specific to video games and beyond what the current
literature and ITU recommendations provide. One concern
relates to past gaming experiences, skills and expectations
of subjects and how they should be factored into a study.
Others consider for example the study length and training.
Our taxonomy subsumes these into the player factors. Other
best practices might concern selecting contemporary games
with appropriate properties and a specific experimental and
task design that can capture all desired information.

Using the data from prior and future game assessments QoS-
to-QoE mappings can be constructed in order to generalize
findings. Generalized models that relate network aspects to
subjective quality could then serve in conjunction with net-
work monitoring of online and streamed games to perform
game-quality-aware network service management, which is of
special interest for cloud gaming services.

The general, abstract approach to such mappings and models
is depicted in Figure 9. The influencing factors from all aspects
(see the taxonomy in Figure 2 for examples on concrete

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

24

MOS+

subjective aspects

context aspects

technical system aspects

networking aspects

temporal
quality

spatial
quality

interaction
quality

Figure 9: Abstract representation for a QoE model for online
and cloud gaming. Quality is affected by aspects discussed
in the taxonomy of Figure 2. Results from individual quality
assements are then combined to a unified quality or MOS
rating. Based on ITU-T G.1072 [224].

factors) affect the individual quality aspects (here separated
into temporal, spatial and interaction). These individual quality
aspects can then be combined again into a unified, overall
quality scale for a specific scenario. One current concrete
model for cloud gaming that follows this abstract approach is
G.1072 [224]. The model linearly combines the results from
separated quality assessments. But this may not be an ideal
approach, since past subjective assessments have often experi-
enced exponential reactions in response to a QoS degradation
(see [225]). In addition, the strength with which a quality
aspect is influenced by an influencing factor remains generally
unclear and may depend on the specific circumstance. For
example, depending on the specific game under test the
network delay may play a significant role for the interaction
quality, or it may not have an influence at all. This necessitates
the need for further research and model development, and to
take a closer look at the effects of influence factors.

B. Influence Factors and Parameter Interactions

The evaluation of correlations between subjective quality
metrics of video games and external influence and context
factors is crucial to further the understanding of QoE in video
games. The taxonomy presented in this work is an abstract,
qualitative approach to this issue, but a deeper understanding
through future, quantitative evaluations of individual factors is
mandated.

A chief endeavor to improve the significance of any indi-
vidual game study is the categorization and clustering of video
games based on observable, objective and technical properties,
such as the game speed, temporal and spatial input precision or
randomness. Results from past studies suggest that comparing
results between video game QoE studies of games, even games
of the same genre, may not be straightforward and depends
on game factors beyond the genre. It especially depends on
factors that describe a game’s interaction characteristics, such
as the tempo. Future research should thus evaluate appropriate
metrics to quantify a game’s tempo and define other metrics
(e.g. metrics derived from our taxonomy) to classify and clus-
ter games. These clusters could then serve to generalize results
from studies and make them transferable. Metric candidates
include the Actions per Minute (APM) for game tempo (see
also [226]) and visual complexity metrics derived from video

coding. Several works already pursue attempts to categorize
games by player and game performance metrics [223], [227],
[228]. Then, with such categories in hand, it might even be
beneficial if category-specific metrics were introduced. For
example, some high tempo categories (e.g. racing games)
might rely on specific timings of certain actions, while this is
completely irrelevant for games with no input deadlines (e.g.
turn-based strategy). So, timing-based metrics will mostly not
be applicable to the latter case.

C. Network-related Aspects

The network underlying any online or cloud-streamed game
is always in flux, with new trends and approaches appearing
all the time. While not specifically intended for gaming, recent
trends have recognized the general need to provide an appro-
priate QoS to time-sensitive applications. This ranges from
URLLC in 5G networks, to the standardization of Ethernet
TSN by the IEEE, and especially to the efforts to provide low
latency Internet in typical home environments with modern
AQM (e.g. FQ-CoDel), WiFi improvements (akin to 802.11e),
and improved transport protocols (e.g. IETF QUIC). The fol-
lowing four paragraphs highlight some of the most interesting
network-related research areas for video games.

1) Novel transport protocols: Video game traffic char-
acteristics and requirements should be taken into account
when furthering the development and research of the Internet
protocol stack. Online and streamed video games have specific
needs with regards to the protocol stack that are different from
many other Internet applications. However, these needs have
not yet been exhaustively investigated and evaluated.

One main concern are future developments of the transport
layer protocols and their aptitude for real-time communication.
IETF QUIC [229], of which version 1 (which is still strongly
tied to HTTP/3) was finalized in 2021, shows some very
promising properties with regards to video games. With its
optional reliability and non-blocking multi-stream capability
it could better fulfill an online game’s requirements than UDP
or TCP.

Of further note are both the composition of games’ ap-
plication layer protocols and the influences of the access
network. The delay variations of Wi-Fi networks can be
especially detrimental to online and streamed games. Similar
observations have already been made with other interactive
traffic such as VoIP and video conferencing over Wi-Fi. Ap-
proaches that better coordinate the channel and fairly distribute
radio resources can alleviate the issues of current real-time
applications even in a shared access medium like Wi-Fi.

2) Network schedulers and shapers: Furthermore, appro-
priate transport layer AQM techniques could diminish the
influence of the network on the E2E lag, since queuing delay
can be a large contributor especially in congested, everyday
situations. The concrete interactions of interactive application
traffic with AQM and the optimal mechanisms are not yet
conclusively researched. Especially game streaming could
challenge any single FIFO queue system with its non-elastic
high throughput and low delay demands. Thus, online video
game and cloud gaming traffic can be a well suited use case

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

25

for the evaluation of future AQM research. The detection and
treatment of the demands of video game network flows by the
schedulers could be improved when appropriately tagged with
a Differentiated Services Code Point (DSCP), even though that
may be bleached while traversing the Internet. A 2020 master’s
thesis [230] already touches on many of the potential benefits
and challenges of using AQM and novel transport protocols
for gaming with special attention to browser environments.

3) Lag mitigation and cloud gaming optimizations: An-
other aspect is to develop a deeper understanding of and
further refinements to lag compensation, lag concealment
and lag mitigation techniques in online video games. This
includes their potential side-effects like cheating or rollbacks.
Moreover, the existing approaches are designed to work for
conventional multiplayer online games, not game streaming
environments.

It would also be of considerable interest to advance the
research on lag mitigation techniques that could be applied to
cloud gaming. Initial ideas aim to predict user inputs at the
streaming host and pre-compute and pre-render the resulting
game states in order to ’skip’ the network delay [61], [231],
[232], enable the client to apply further post-processing steps
on the received video stream, e.g. [233], or even attempt to
modify the game world and scale the difficulty according to
current lag [234].

The ongoing research surrounding cloud gaming goes well
beyond pure lag optimizations. Particular interest resides also
on the reduction of the high throughput dependence, primar-
ily by tasking the client with more than just simple video
decoding, e.g. moving parts of the game logic or rendering
process back to the client. Examples of these approaches can
be found in [235]–[238]. Although, none of these approaches
has been realized in a practical system yet, as they can
impose drastic overhead or interfere with game design and
development decisions.

4) Server placement: A final networking challenge is the
placement of game servers. The placement of online game
servers and game streaming hosts are different problems
with different objectives. While the main concern of placing
online game servers is a low network delay to its players, its
additional objective is a placement in the geographical center
of a large audience to facilitate matchmaking. A good example
of the possible approaches for delay optimizing placements
can be found in [239], here with a focus on machine learning.
In contrast, game streaming placement is much more con-
cerned with delay minimization alongside providing sufficient
throughput while considering economic and resource factors.
Streaming servers can be much more resource intense in terms
of hardware, power and network while demanding even lower
delays than online game servers.

A low tolerance to delay implies very localized or edge
placement, but would diminish the potential efficiency gains
that larger, more centralized data centers would offer. How-
ever, the effectiveness of modern edge cloud and fog archi-
tectures might be worth to investigate, as they might be able
to dynamically allocate the necessary resources to facilitate
cloud gaming on a case-by-case and demand-orientated basis.
In any case, the suitability of different networking and data

center architectures for all types of video game servers is an
important task.

Generally speaking, an optimal placement first requires a
consensus of the relevant optimization criteria and on values
that are suitable for gaming (e.g. a low delay and jitter). With
these at hand, multi-objective placement optimizations can
be performed, which pose an interesting research challenge
themselves.

IX. CONCLUSION

It should be clear at this point that examining the QoS and
QoE of video games from a network researcher’s perspective
is no trivial task. Not only do the ever increasing prevalence
and economic importance make considering online video
games important for network planning and traffic engineering,
even beyond the current strong trend of cloud gaming. The
interactive and real-time nature of gaming itself brings unique
properties and challenges to the table. While the perceived
quality of these games at first glance closely relates to network
QoS, there are many more aspects at play as captured in our
taxonomy.

The development of generally applicable models for the
perceived quality of online video games under the influence
of subjective, context, system, and network influence factors
is crucial to further our understanding of video game QoE.
However, the heterogeneity of modern games as well as
the rate of innovation in the area make the definition of
such models an increasingly complex task. To remediate this
situation as well as to provide the networking community
with a condensed introduction to the area of video games,
we conducted a detailed survey of current research work in
the area.

This is combined with a taxonomy that compiles and dis-
sects subjective, contextual, technical, and network influence
factors of video game QoS and QoE. The taxonomy forms a
foundation that can be taken into account when conducting
video game studies. Based on these two approaches we were
able to derive a number of lessons learned that can provide
utility for future studies. These lessons suggest to perform
exhaustive parameter investigations to determine the influenc-
ing factors (e.g. as given by our taxonomy) that are significant
for a specific experiment, and to select appropriate application
performance metrics or subjective assessment tools. Both of
these require a firm grasp of the chosen game’s inner workings,
its placement in the greater landscape of video games and in-
depth knowledge of influencing and contextual factors.

Finally, we show that there are numerous open topics that re-
quire additional research. And advancing research on network-
ing in video games can also assist research on other, closely
related interactive applications with similar demands, from
industrial and automotive remote control to tele-medicine.
We believe that our discussion of available work and the
derived taxonomy of QoE and QoS influence factors can direct
researchers towards these extremely interesting topics.

If the reader is now left wanting to know more about the
subject we can recommend some avenues to remedy this. To
further one’s understanding of the internal makeup of online

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

26

video games, both the academic as well as the game developer
perspective are worth looking into. For the former, summary
works like Armitage’s 2006 book [10] are available, while the
latter can be approached by more contemporary books like
[12] or by the numerous tech articles referenced throughout
this manuscript. But if one is, understandably, more interested
in the current landscape of gaming user study approaches and
study results, we would strongly recommend starting with the
current collection of recommendations and efforts as organized
by the ITU-T, in particular [14], [18], [19], [224].

REFERENCES

[1] SuperData, 2019 year in review: Digital games and interactive media,
2020.

[2] J. Porter, US consumers spent record amounts on video games in
2020, NPD reports, https://www.theverge.com/2021/1/15/22233003/
us-npd-group-video-game-spending-2020-record-nintendo-switch-
call-of-duty-animal-crossing-ps5-ps4, Accessed: 2021-11-16, 2014.

[3] Cisco annual internet report (2018–2023) white paper, Accessed:
2021-11-16, 2020. [Online]. Available: https : / /www.cisco .com/c /
en / us / solutions / collateral / executive - perspectives / annual - internet -
report/white-paper-c11-741490.html.

[4] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: Archi-
tecture and performance,” IEEE Network, vol. 27, no. 4, pp. 16–21,
2013.

[5] L. Skorin-Kapov, M. Varela, T. Hoßfeld, and K.-T. Chen, “A sur-
vey of emerging concepts and challenges for QoE management of
multimedia services,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 14, no. 2s, pp. 1–
29, 2018.

[6] K. Brunnström et al., “Qualinet white paper on definitions of quality
of experience,” P. L. Callet, S. Möller, and A. Perkis, Eds., 2013.

[7] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “An evalua-
tion of QoE in cloud gaming based on subjective tests,” in 2011 Fifth
International Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, IEEE, 2011, pp. 330–335.

[8] W. Cai et al., “A survey on cloud gaming: Future of computer games,”
IEEE Access, vol. 4, pp. 7605–7620, 2016.

[9] A. Wahab, N. Ahmad, M. G. Martini, and J. Schormans, “Subjective
quality assessment for cloud gaming,” J, vol. 4, no. 3, pp. 404–419,
2021. DOI: 10.3390/j4030031. [Online]. Available: https://www.mdpi.
com/2571-8800/4/3/31.

[10] G. Armitage, M. Claypool, and P. Branch, Networking and online
games: understanding and engineering multiplayer Internet games.
John Wiley & Sons, 2006.

[11] J. Smed, T. Kaukoranta, and H. Hakonen, “Aspects of networking in
multiplayer computer games,” The Electronic Library, vol. 20, no. 2,
pp. 87–97, 2002.

[12] No Bugs Hare, Development and Deployment of Multiplayer Online
Games, Volume I: GDD, Authoritative Servers, Communications.
ITHare.com Website GmbH, 2017.

[13] I. Wechsung and K. De Moor, “Quality of experience versus user
experience,” in Quality of Experience: Advanced Concepts, Applica-
tions and Methods, S. Möller and A. Raake, Eds. Cham: Springer
International Publishing, 2014, pp. 35–54. DOI: 10.1007/978-3-319-
02681-7_3. [Online]. Available: https://doi.org/10.1007/978-3-319-
02681-7_3.

[14] S. Schmidt, S. Zadtootaghaj, and S. Möller, ITU-T standardization
activities targeting gaming quality of experience, 2021. [Online].
Available: https : / / records . sigmm . org / 2021 / 03 / 24 / itu - t -
standardization-activities-targeting-gaming-quality-of-experience/.

[15] A. Perkis et al., Qualinet white paper on definitions of immersive
media experience (IMEx), 2020. arXiv: 2007 . 07032 [cs.MM].
[Online]. Available: https://arxiv.org/abs/2007.07032.

[16] Proposal for new work item P.BBQCG: Parametric bitstream-based
quality assessment of cloud gaming services, ITU-T SG 12 (Study
Period 2017) Contribution 489, Apr. 2020. [Online]. Available: https:
//www.itu.int/md/T17-SG12-C-0489/en.

[17] S. Möller, S. Schmidt, and J. Beyer, “Gaming taxonomy: An overview
of concepts and evaluation methods for computer gaming QoE,”
in 2013 Fifth International Workshop on Quality of Multimedia
Experience (QoMEX), 2013, pp. 236–241. DOI: 10.1109/QoMEX.
2013.6603243.

[18] ITU-T recommendation G.1032: Influence factors on gaming qual-
ity of experience, SERIES G: TRANSMISSION SYSTEMS AND
MEDIA, DIGITAL SYSTEMS AND NETWORKS, Oct. 2017. DOI:
11.1002/1000/13396. [Online]. Available: http://handle.itu.int/11.
1002/1000/13396.

[19] ITU-T recommendation P.809: Subjective evaluation methods for
gaming quality, SERIES P: TELEPHONE TRANSMISSION QUAL-
ITY, TELEPHONE INSTALLATIONS, LOCAL LINE NETWORKS,
Jun. 2018. [Online]. Available: https : / / www. itu . int / rec / T- REC -
P.809/en.

[20] A. Nylund and O. Landfors, “Frustration and its effect on immersion
in games : A developer viewpoint on the good and bad aspects of
frustration,” M.S. thesis, Umeå University, Department of Informatics,
2015, p. 32.

[21] M. Zamith et al., “A game loop architecture with automatic distribu-
tion of tasks and load balancing between processors,” Proceedings of
SBGames, pp. 5–8, 2009.

[22] L. Valente, A. Conci, and B. Feijó, “Real time game loop models for
single-player computer games,” in Proceedings of the IV Brazilian
Symposium on Computer Games and Digital Entertainment, vol. 89,
2005, p. 99.

[23] D. Sanchez-Crespo and D. S.-C. Dalmau, Core techniques and
algorithms in game programming. New Riders, 2004.

[24] J. Gregory, Game engine architecture, 3rd ed. AK Peters/CRC Press,
2018.

[25] J. van Waveren, “The DOOM III network architecture,” Id Software,
Inc., Tech. Rep., 2006, Accessed: 2021-11-16. [Online]. Available:
http://mrelusive.com/publications/papers/The-DOOM-III-Network-
Architecture.pdf.

[26] G. Fiedler, Snapshot interpolation,
https://gafferongames.com/post/snapshot_interpolation/, Accessed:
2021-11-16, 2014.

[27] Valve Developer Community, Source multiplayer networking, https:
//developer.valvesoftware.com/wiki/Source_Multiplayer_Networking,
Accessed: 2021-11-16, 2005.

[28] M. Frohnmayer and T. Gift, “The TRIBES engine networking model:
How to make the internet rock for multi-player games,” in Proceed-
ings of the Game Developers Conference, 2000. [Online]. Available:
https : / /www.gamedevs .org /uploads / tribes - networking- model .pdf
(visited on 11/16/2021).

[29] G. Fiedler, State synchronization, https: / /gafferongames.com/post/
state_synchronization/, Accessed: 2021-11-16, 2015.

[30] Riot Games, Matchmaking guide, Accessed: 2021-11-16, 2019. [On-
line]. Available: https://support- leagueoflegends.riotgames.com/hc/
en-us/articles/201752954-Matchmaking-Guide.

[31] A. E. Elo, The rating of chessplayers, past and present. Arco Pub.,
1978.

[32] R. Herbrich, T. Minka, and T. Graepel, “Trueskill(tm): A bayesian
skill rating system,” in Advances in Neural Information Processing
Systems 20, 2007.

[33] T. Minka, R. Cleven, and Y. Zaykov, “Trueskill 2: An improved
bayesian skill rating system,” Microsoft, Tech. Rep. MSR-TR-2018-
8, 2018. [Online]. Available: https : / / www. microsoft . com / en - us /
research / publication / trueskill - 2 - improved - bayesian - skill - rating -
system/ (visited on 11/16/2021).

[34] J. van Dongen, Why good matchmaking requires enormous player
counts, Accessed: 2021-11-16, 2014. [Online]. Available: http : / /
joostdevblog . blogspot . com / 2014 / 11 / why - good - matchmaking -
requires-enormous.html.

[35] M. Terrano and P. Bettner, “1500 archers on a 28.8: Network pro-
gramming in Age of Empires and beyond,” Game Developer, 2001.
[Online]. Available: https://www.gamedeveloper.com/programming/
1500-archers-on-a-28-8-network-programming-in-age-of-empires-
and-beyond (visited on 11/16/2021).

[36] C. D. Nguyen, F. Safaei, and P. Boustead, “Optimal assignment of
distributed servers to virtual partitionsfor the provision of immersive
voice communicationin massively multiplayer games,” Computer
Communications, vol. 29, no. 9, pp. 1260–1270, 2006.

[37] G. Papp and C. GauthierDickey, “Characterizing multiparty voice
communication for multiplayer games,” in ACM SIGMETRICS Per-
formance Evaluation Review, vol. 36, 2008, pp. 465–466.

[38] T. Triebel, B. Guthier, T. Plotkowiak, and W. Effelberg, “Peer-to-
peer voice communication for massively multiplayer online games,”
in Proceedings of the 6th IEEE Consumer Communications and
Networking Conference (CCNC), 2009.

[39] M. Kaytoue, A. Silva, L. Cerf, W. Meira Jr, and C. Raïssi, “Watch
me playing, i am a professional: A first study on video game live

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

27

streaming,” in Proceedings of the 21st International Conference on
World Wide Web, ACM, 2012, pp. 1181–1188.

[40] K. Pires and G. Simon, “Dash in twitch: Adaptive bitrate streaming in
live game streaming platforms,” in Proceedings of the 2014 Workshop
on Design, Quality and Deployment of Adaptive Video Streaming,
ACM, 2014.

[41] J. Deng, F. Cuadrado, G. Tyson, and S. Uhlig, “Behind the game:
Exploring the twitch streaming platform,” in Proceedings of the
International Workshop on Network and Systems Support for Games
(NetGames), 2015.

[42] I. Rec, “G.1030-estimating end-to-end performance in IP networks for
data applications,” International Telecommunication Union, Geneva,
Switzerland, vol. 42, 2005.

[43] K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive are online
gamers to network quality?” Communications of the ACM, vol. 49,
no. 11, pp. 34–38, 2006.

[44] K.-T. Chen, P. Huang, and C.-L. Lei, “Effect of network quality on
player departure behavior in online games,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 5, pp. 593–606, 2008.

[45] P. Lincroft, The internet sucks: Or, what i learned coding X-Wing vs.
TIE Fighter, 1999. [Online]. Available: https://www.gamedeveloper.
com/design/the-internet-sucks-or-what-i-learned-coding-x-wing-vs-
tie-fighter (visited on 11/16/2021).

[46] Factorio Blog, Friday facts nr. 149 - deep down in multiplayer, https:
//www.factorio.com/blog/post/fff-149, Accessed: 2021-11-16, 2016.

[47] G. Fiedler, Deterministic Lockstep, https://gafferongames.com/post/
deterministic_lockstep/, Accessed: 2021-11-16, 2014.

[48] J. D. Pellegrino and C. Dovrolis, “Bandwidth requirement and state
consistency in three multiplayer game architectures,” in Proceedings
of the 2Nd Workshop on Network and System Support for Games,
ser. NetGames ’03, Redwood City, California, 2003.

[49] S. Ratti, B. Hariri, and S. Shirmohammadi, “A survey of first-person
shooter gaming traffic on the internet,” IEEE Internet Computing,
vol. 14, no. 5, pp. 60–69, 2010.

[50] X. Che and B. Ip, “Packet-level traffic analysis of online games
from the genre characteristics perspective,” Journal of Network and
Computer Applications, vol. 35, no. 1, pp. 240–252, 2012.

[51] M. Suznjevic and M. Matijasevic, “Player behavior and traffic char-
acterization for MMORPGs: A survey,” Multimedia Systems, vol. 19,
no. 3, pp. 199–220, Aug. 2013.

[52] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40–45, Nov. 2006. DOI:
10.1145/1167838.1167860. [Online]. Available: https://doi.org/10.
1145/1167838.1167860.

[53] L. Pantel and L. C. Wolf, “On the impact of delay on real-time multi-
player games,” in Proceedings of the 12th international workshop on
Network and operating systems support for digital audio and video,
ACM, 2002, pp. 23–29.

[54] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, “The effect
of latency on user performance in Warcraft III,” in Proceedings of the
2nd workshop on Network and system support for games, ACM, 2003,
pp. 3–14.

[55] T. Fritsch, H. Ritter, and J. Schiller, “The effect of latency and
network limitations on MMORPGs: A field study of Everquest 2,”
in Proceedings of 4th ACM SIGCOMM Workshop on Network and
System Support for Games, ser. NetGames ’05, Hawthorne, NY, 2005.

[56] A. A. Laghari, H. He, K. A. Memon, R. A. Laghari, I. A. Halepoto,
and A. Khan, “Quality of experience (QoE) in cloud gaming models:
A review,” multiagent and grid systems, vol. 15, no. 3, pp. 289–304,
2019.

[57] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency
sensitive cloud native applications: A performance study on aws,”
in 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), IEEE, 2019, pp. 272–280.

[58] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-
sensitive application performance in the cloud,” in Proceedings of the
first annual ACM SIGMM conference on Multimedia systems, 2010,
pp. 35–46.

[59] G. Brown et al., “Ultra-reliable low-latency 5G for industrial automa-
tion,” Technol. Rep. Qualcomm, vol. 2, p. 52 065 394, 2018.

[60] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A survey on quality of experience of HTTP adaptive streaming,”
IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[61] N. Nicholson, Exploring "negative latency", Accessed: 2021-11-16,
2019. [Online]. Available: https://nolannicholson.com/2019/12/16/
exploring-negative-latency.html.

[62] M. Carrascosa and B. Bellalta, “Cloud-gaming: Analysis of Google
Stadia traffic,” arXiv preprint arXiv:2009.09786, 2020.

[63] D. Patterson, Google Stadia’s biggest challenge with streaming and
meeting gamers’ expectations, Accessed: 2021-11-16, 2020. [Online].
Available: https : / / www. techrepublic . com / article / google - stadias -
biggest-challenge-with-steaming-and-meeting-gamers-expectations/.

[64] K. Nichols, S. Blake, F. Baker, and D. Black, RFC 2474: Definition
of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
headers, Dec. 1998. [Online]. Available: https://tools.ietf.org/html/
rfc2474.

[65] R. Adams, “Active queue management: A survey,” IEEE communi-
cations surveys & tutorials, vol. 15, no. 3, pp. 1425–1476, 2012.

[66] G. Fiedler, Never trust the client, http : / / web . archive . org / web /
20160427205903 / http : / / gafferongames . com / 2016 / 04 / 25 / never -
trust-the-client/, Accessed: 2021-11-16, 2016.

[67] C. Neumann, N. Prigent, M. Varvello, and K. Suh, “Challenges in
peer-to-peer gaming,” ACM SIGCOMM Computer Communication
Review, vol. 37, no. 1, pp. 79–82, 2007.

[68] A. Weinkove, Minimizing the pain of lockstep multiplayer, http :
/ / www . tundragames . com / minimizing - the - pain - of - lockstep -
multiplayer/, Accessed: 2021-11-16, 2015.

[69] Y. W. Bernier, “Latency compensating methods in client/server in-
game protocol design and optimization,” in Proceedings of the Game
Developers Conference, vol. 98033, 2001.

[70] F. Smith, Synchronous rts engines and a tale of desyncs, https://www.
forrestthewoods.com/blog/synchronous_rts_engines_and_a_tale_of_
desyncs/, Accessed: 2021-11-16, 2011.

[71] P. Miller, The lag-fighting techniques behind GGPO’s netcode, https://
www.gamedeveloper.com/programming/the-lag-fighting-techniques-
behind-ggpo-s-netcode, Accessed: 2021-11-16, 2012.

[72] G. Gambetta, Fast-paced multiplayer (part ii): Client-side prediction
and server reconciliation, 2013. [Online]. Available: https : / /www.
gabrielgambetta . com / client - side - prediction - server - reconciliation .
html (visited on 11/16/2021).

[73] R. Pusch, “Explaining how fighting games use delay-based and
rollback netcode,” Ars Technica, Oct. 2019. [Online]. Available: https:
//arstechnica.com/gaming/2019/10/explaining-how-fighting-games-
use-delay-based-and-rollback-netcode/ (visited on 11/16/2021).

[74] B. House, Choosing the right netcode for your game, https://blogs.
unity3d.com/2020/09/08/choosing-the-right-netcode-for-your-game/,
Accessed: 2021-05-21, 2020.

[75] F. W. Li, R. W. Lau, and D. Kilis, “GameOD: An internet based game-
on-demand framework,” in Proceedings of the ACM symposium on
Virtual reality software and technology, ACM, 2004, pp. 129–136.

[76] G. Fiedler, Snapshot compression, Accessed: 2021-11-16, 2015. [On-
line]. Available: https : / / gafferongames . com / post / snapshot % 5C _
compression/.

[77] P. A. Branch, A. L. Cricenti, and G. J. Armitage, “A markov model of
server to client IP traffic in first person shooter games,” in 2008 IEEE
International Conference on Communications, IEEE, 2008, pp. 5715–
5720.

[78] D. Stefyn, A. Cricenti, P. Branch, et al., “Quake III Arena game
structures,” CAIA Technical Report 110209A, 2011.

[79] J. Saldana, L. Sequeira, J. Fernández-Navajas, and J. Ruiz-Mas, “Traf-
fic optimization for TCP-based massive multiplayer online games,”
in 2012 International Symposium on Performance Evaluation of
Computer & Telecommunication Systems (SPECTS), IEEE, 2012,
pp. 1–8.

[80] K. L. Morse, L. Bic, and M. Dillencourt, “Interest management in
large-scale virtual environments,” Presence: Teleoperators & Virtual
Environments, vol. 9, no. 1, pp. 52–68, 2000.

[81] S. Benford, C. Greenhalgh, T. Rodden, and J. Pycock, “Collaborative
virtual environments,” Association for Computing Machinery. Com-
munications of the ACM, vol. 44, no. 7, pp. 79–79, 2001.

[82] F. Sanglard, Quake 3 source code review: Network model (part 3 of
5), https://fabiensanglard.net/quake3/network.php, Accessed: 2021-
11-16, 2012.

[83] J. Aronson, “Dead reckoning: Latency hiding for networked games,”
Game Developer, 1997. [Online]. Available: https : / / www .
gamedeveloper.com/programming/dead- reckoning- latency- hiding-
for-networked-games (visited on 11/16/2021).

[84] L. Gardenghi, S. Pifferi, G. D’Angelo, and L. Bononi, “Design and
simulation of a migration-based architecture for massively populated
internet games,” in IEEE Global Telecommunications Conference
Workshops, 2004. GlobeCom Workshops 2004., IEEE, 2004, pp. 166–
175.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

28

[85] P. B. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz, “The
partial migration of game state and dynamic server selection to
reduce latency,” Multimedia Tools and Applications, vol. 45, no. 1-3,
pp. 83–107, 2009.

[86] V. Jalaparti, “Enabling seamless wide area migration of online
games,” University of Illinois, Tech. Rep., 2013, Master’s thesis.

[87] V. Burger et al., “Load dynamics of a multiplayer online battle arena
and simulative assessment of edge server placements,” in Proceedings
of the 7th International Conference on Multimedia Systems, ser. MM-
Sys ’16, Klagenfurt, Austria, 2016.

[88] C.-C. Wu, K.-T. Chen, C.-M. Chen, P. Huang, and C.-L. Lei, “On the
challenge and design of transport protocols for MMORPGs,” Multi-
media Tools and Applications (special issue on Massively Multiuser
Online Gaming Systems and Applications), pp. 7–32, 2009.

[89] C. Lernö, Game servers: UDP vs. TCP, https : / / 1024monkeys .
wordpress.com/2014/04/01/game- servers- udp- vs- tcp/, Accessed:
2021-11-16, 2014.

[90] G. Fiedler, UDP vs. TCP, https://gafferongames.com/post/udp_vs\
_tcp/, Accessed: 2021-11-16, 2014.

[91] G. Fiedler, Reliability and congestion avoidance over UDP, https :
//gafferongames.com/post/reliable_ordered_messages/, Accessed:
2021-11-16, 2008.

[92] F. Sanglard, Quake engine code review : Network (2/4), https : / /
fabiensanglard . net / quakeSource / quakeSourceNetWork . php, Ac-
cessed: 2021-11-16, 2009.

[93] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, “An empirical
evaluation of TCP performance in online games,” in Proceedings
of the 2006 ACM SIGCHI international conference on Advances in
computer entertainment technology, 2006.

[94] S. Pack, E. Hong, Y. Choi, J.-S. Kim, D. Ko, et al., “Game transport
protocol: A reliable lightweight transport protocol for massively
multiplayer online games (MMPOGs),” in Multimedia systems and
Applications V, International Society for Optics and Photonics,
vol. 4861, 2002, pp. 83–94.

[95] B. Anand, J. Sebastian, S. Y. Ming, A. L. Ananda, M. C. Chan,
and R. K. Balan, “PGTP: Power aware game transport protocol for
multi-player mobile games,” in 2011 International Conference on
Communications and Signal Processing, IEEE, 2011, pp. 399–404.

[96] S. Mortenson, “Making a multiplayer game with go and grpc,”
2020. [Online]. Available: https : / /mortenson .coffee /blog /making-
multiplayer-game-go-and-grpc/ (visited on 11/15/2021).

[97] M. Claypool, D. LaPoint, and J. Winslow, “Network analysis of
counter-strike and starcraft,” in Conference Proceedings of the 2003
IEEE International Performance, Computing, and Communications
Conference, 2003., Apr. 2003, pp. 261–268. DOI: 10.1109/PCCC.
2003.1203707.

[98] F. Metzger and R. Heger, “Exploring the transmission behaviour of
overwatch: The source of lag,” in 2018 30th International Teletraffic
Congress (ITC 30), vol. 01, Sep. 2018, pp. 93–96. DOI: 10 .1109/
ITC30.2018.00022.

[99] A. F. Ali, A. S. Ismail, and A. Bade, “An overview of network-
ing infrastructures for massively multiplayer online games,” 5th
Postgraduate Annual Research Seminar (PARS), UTM Technology
University of Malaysia, Tech. Rep., 2009, Accessed: 2021-05-21.
[Online]. Available: https : / / pdfs . semanticscholar . org / 887b /
374b1010ca23a01bb89b71e40fd31e34ce92.pdf.

[100] L. Ricci and E. Carlini, “Distributed virtual environments: From client
server to cloud and P2P architectures,” in Proceedings of the In-
ternational Conference on High Performance Computing Simulation
(HPCS), 2012.

[101] R. A. Bangun and H. Beadle, “A network architecture for mul-
tiuser networked games on demand,” in Proceedings of International
Conference on Information, Communications and Signal Processing,
IEEE, vol. 3, 1997, pp. 1815–1819.

[102] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee, “A scalable architecture
for supporting interactive games on the internet,” in Proceedings
of the Sixteenth Workshop on Parallel and Distributed Simulation,
ser. PADS ’02, 2002.

[103] S. Fiedler, M. Wallner, and M. Weber, “A communication archi-
tecture for massive multiplayer games,” in Proceedings of the 1st
Workshop on Network and System Support for Games (NetGames),
Braunschweig, Germany, 2002.

[104] C.-c. A. Hsu, J. Ling, Q. Li, and C.-C. J. Kuo, “The design of
multiplayer online video game systems,” in Multimedia Systems and
Applications VI, A. G. Tescher, B. Vasudev, V. M. B. Jr., and
A. Divakaran, Eds., International Society for Optics and Photonics,

vol. 5241, SPIE, 2003, pp. 180–191. DOI: 10 . 1117 / 12 . 512201.
[Online]. Available: https://doi.org/10.1117/12.512201.

[105] B. Ng, F. W. Li, R. W. Lau, A. Si, and A. Siu, “A performance study
on multi-server DVE systems,” Information Sciences, 2003.

[106] T. Wang, C.-L. Wang, and F. C. Lau, “A grid-enabled multi-server
network game architecture,” in 3rd International Conference on
Application and Development of Computer Games (ADCOG), 2004,
pp. 18–25.

[107] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza,
“Locality aware dynamic load management for massively multiplayer
games,” in Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’05,
2005.

[108] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive server selection for large
scale interactive online games,” Computer Networks, vol. 49, no. 1,
pp. 84–102, 2005, Networking Issue in Entertainment Computing.
DOI: https : / / doi . org / 10 . 1016 / j . comnet . 2005 . 04 . 006. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii /
S1389128605001015.

[109] M. Assiotis and V. Tzanov, “A distributed architecture for
MMORPG,” in Proceedings of 5th ACM SIGCOMM Workshop on
Network and System Support for Games, ser. NetGames ’06, 2006.

[110] Duong Nguyen Binh Ta and Suiping Zhou, “Efficient client-to-server
assignments for distributed virtual environments,” in Proceedings 20th
IEEE International Parallel Distributed Processing Symposium, 2006.

[111] F. Glinka, A. Ploß, J. Müller-lden, and S. Gorlatch, “Rtf: A real-
time framework for developing scalable multiplayer online games,”
in Proceedings of the 6th ACM SIGCOMM Workshop on Network
and System Support for Games, ser. NetGames ’07, 2007.

[112] A. Ploss, S. Wichmann, F. Glinka, and S. Gorlatch, “From a single-
to multi-server online game: A Quake 3 case study using RTF,” in
Proceedings of the 2008 International Conference on Advances in
Computer Entertainment Technology, ser. ACE ’08, 2008.

[113] A. M. Khan, I. Arsov, M. Preda, S. Chabridon, and A. Beugnard,
“Adaptable client-server architecture for mobile multiplayer games,”
in Proceedings of the 3rd International ICST Conference on Simula-
tion Tools and Techniques, ser. SIMUTools ’10, 2010.

[114] R. Prodan and A. Iosup, “Operation analysis of massively multiplayer
online games on unreliable resources,” Peer-to-Peer Networking and
Applications, vol. 9, no. 6, pp. 1145–1161, 2016.

[115] C. Diot and L. Gautier, “A distributed architecture for multiplayer
interactive applications on the internet,” IEEE Network, vol. 13, no. 4,
pp. 6–15, 1999.

[116] Dugki Min, E. Choi, Donghoon Lee, and Byungseok Park, “A
load balancing algorithm for a distributed multimedia game server
architecture,” in Proceedings IEEE International Conference on Mul-
timedia Computing and Systems, 1999.

[117] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low latency and
cheat-proof event ordering for peer-to-peer games,” in Proceedings of
the 14th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), 2004.

[118] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation
of game servers: A peer-to-peer approach to scalable multi-player
online games,” in Proceedings of 3rd ACM SIGCOMM Workshop on
Network and System Support for Games, ser. NetGames ’04, 2004.

[119] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support
for massively multiplayer games,” in IEEE INFOCOM, 2004.

[120] S. Rooney, D. Bauer, and R. Deydier, “A federated peer-to-peer net-
work game architecture,” IEEE Communications Magazine, vol. 42,
no. 5, pp. 114–122, 2004.

[121] A. El Rhalibi and M. Merabti, “Agents-based modeling for a peer-to-
peer MMOG architecture,” ACM Computers in Entertainment, vol. 3,
no. 2, 2005.

[122] F. R. Wagner, M. G. Martins, and A. T. Gómez, “A peer to peer
architecture applied to multiplayer games,” Proceedings of the 14th
International Conference on Networks (ICN), 2015.

[123] A. P. Yu and S. T. Vuong, “MOPAR: A mobile peer-to-peer overlay
architecture for interest management of massively multiplayer online
games,” in Proceedings of the International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSS-
DAV), 2005.

[124] A. R. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed
architecture for online multiplayer games,” in Proceedings of the 3rd
Symposium on Networked Systems Design & Implementation (NSDI),
2006.

[125] T. Hampel, T. Bopp, and R. Hinn, “A peer-to-peer architecture
for massive multiplayer online games,” in Proceedings of 5th ACM

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

29

SIGCOMM Workshop on Network and System Support for Games
(NetGames), 2006.

[126] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen, “VON: A scal-
able peer-to-peer network for virtual environments,” IEEE Network,
vol. 20, no. 4, pp. 22–31, 2006.

[127] L. Fan, H. Taylor, and P. Trinder, “Mediator: A design framework for
P2P MMOGs,” in Proceedings of the 6th ACM SIGCOMM Workshop
on Network and System Support for Games (NetGames), 2007.

[128] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan, “Hydra: A massively-
multiplayer peer-to-peer architecture for the game developer,” in
Proceedings of the 6th ACM SIGCOMM Workshop on Network and
System Support for Games (NetGames), 2007.

[129] L. Fan, P. Trinder, and H. Taylor, “Design issues for peer-to-
peer massively multiplayer online games,” International Journal of
Advanced Media and Communication, vol. 4, no. 2, p. 108, 2010.

[130] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for massively
multiplayer online games: A survey,” ACM Computing Surveys,
vol. 46, no. 1, 9:1–9:51, 2013.

[131] S. A. Abdulazeez, A. El Rhalibi, M. Merabti, and D. Al-Jumeily,
“Survey of solutions for peer-to-peer MMOGs,” in Proceedings of
the International Conference on Computing, Networking and Com-
munications (ICNC), 2015.

[132] E. Buyukkaya, M. Abdallah, and G. Simon, “A survey of peer-to-peer
overlay approaches for networked virtual environments,” Peer-to-Peer
Networking and Applications, vol. 8, no. 2, pp. 276–300, 2015.

[133] L. Liu, A. Jones, N. Antonopoulos, Z. Ding, and Y. Zhan, “Perfor-
mance evaluation and simulation of peer-to-peer protocols for mas-
sively multiplayer online games,” Multimedia Tools and Applications,
vol. 74, no. 8, pp. 2763–2780, 2015.

[134] E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game
server system,” University of Michigan, Tech. Rep., 2001.

[135] D. Bauer, S. Rooney, and P. Scotton, “Network infrastructure for
massively distributed games,” in Proceedings of the 1st Workshop on
Network and System Support for Games (NetGames), 2002, pp. 36–
43.

[136] J. Müller and S. Gorlatch, “GSM: A game scalability model for
multiplayer real-time games,” in Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.,
2005.

[137] M. Moraal, “Massive multiplayer online game architectures,” Rad-
boud University, Nijmegen, The Netherlands, Bachelor’s Thesis,
2006.

[138] L. Yang and P. Sutinrerk, “Mirrored arbiter architecture: A network
architecture for large scale multiplayer games,” in Proceedings of the
2007 Summer Computer Simulation Conference, ser. SCSC ’07, 2007.

[139] C. Carter, A. E. Rhalibi, M. Merabti, and A. T. Bendiab, “Hybrid
client-server, peer-to-peer framework for MMOG,” in 2010 IEEE
International Conference on Multimedia and Expo, 2010.

[140] G. Wang and K. Wang, “An efficient hybrid P2P MMOG cloud
architecture for dynamic load management,” in The International
Conference on Information Network 2012, 2012.

[141] E. Carlini, L. Ricci, and M. Coppola, “Integrating centralized and
peer-to-peer architectures to support interest management in mas-
sively multiplayer on-line games,” Concurrency and Computation:
Practice and Experience, 2015.

[142] B. K. Schmidt, M. S. Lam, and J. D. Northcutt, “The interactive
performance of SLIM: A stateless, thin-client architecture,” in Pro-
ceedings of the Seventeenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’99, Charleston, South Carolina, USA, 1999.

[143] C.-Y. Huang, D.-Y. Chen, C.-H. Hsu, and K.-T. Chen, “GamingAny-
where: An open-source cloud gaming testbed,” in Proceedings of
the 21st ACM international conference on Multimedia, ACM, 2013,
pp. 827–830.

[144] D. Wu, Z. Xue, and J. He, “iCloudAccess: Cost-effective streaming of
video games from the cloud with low latency,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 24, no. 8, pp. 1405–
1416, 2014.

[145] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “A hybrid edge-
cloud architecture for reducing on-demand gaming latency,” Multi-
media Systems, vol. 20, no. 5, pp. 503–519, 2014.

[146] J. Saldana and M. Suznjevic, “QoE and latency issues in networked
games,” in Handbook of Digital Games and Entertainment Tech-
nologies, R. Nakatsu and M. Rauterberg, Eds. Singapore: Springer
Singapore, 2015, pp. 1–36.

[147] M. Schubert, “Chapter 3: Distributed game architectures,” Ludwig-
Maximilians-Universität, Munich, Germany, Lecture Notes: Manag-
ing and Mining Multiplayer Online Games, 2017.

[148] F. Glinka, A. Ploss, S. Gorlatch, and J. Müller-Iden, “High-level
development of multiserver online games,” International Journal of
Computer Games Technology, 2008.

[149] M. S. Gibson and W. W. Vasconcelos, “A knowledge-based approach
to multiplayer games in peer-to-peer networks,” Knowledge and
Information Systems, 2018.

[150] P. Mildner, T. Triebel, S. Kopf, and W. Effelsberg, “Scaling online
games with netconnectors: A peer-to-peer overlay for fast-paced mas-
sively multiplayer online games,” ACM Computers in Entertainment,
vol. 15, no. 3, 3:1–3:21, 2017.

[151] Enchanted Age Studios, Network bandwidth mathematics; peer-
to-peer versus client/server, https : / / web . archive . org / web /
20170726175305/http://www.enchantedage.com/node/20, Accessed:
2021-11-16, 2008.

[152] J. van Dongen, Joost’s dev blog: Relay servers, http://joostdevblog.
blogspot . com/2014 /09 / relay - servers .html, Accessed: 2021-11-16,
2014.

[153] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An efficient
synchronization mechanism for mirrored game architectures,” in
Proceedings of the 1st Workshop on Network and System Support
for Games, ser. NetGames ’02, 2002.

[154] F. Metzger, A. Rafetseder, S. Schröder, and P. Zwickl, The prospects
of cloud gaming: Do the benefits outweigh the costs? workingpaper,
2016.

[155] S. Perlman, OnLive: Coming to a screen near you, https : / / web .
archive.org/web/20100312043136/http://blog.onlive.com/2010/03/10/
onlive-coming-to-a-screen-near-you/, Accessed: 2021-11-16, 2010.

[156] S. Hollister, Sony announces PlayStation Now, its cloud gaming
service for TVs, consoles, and phones, https://www.theverge.com/
2014/1/7/5284294/sony-announces-playstation-now-cloud-gaming,
Accessed: 2021-11-16, 2014.

[157] C.-F. Chang and S.-H. Ger, “Enhancing 3D Graphics on Mobile
Devices by Image-Based Rendering,” in IEEE Pacific Rim Conference
on Multimedia, 2002.

[158] F. Lamberti and A. Sanna, “A streaming-based solution for remote
visualization of 3D graphics on mobile devices,” IEEE transactions
on visualization and computer graphics, vol. 13, no. 2, pp. 247–260,
2007.

[159] R. W. N. Pazzi, A. Boukerche, and T. Huang, “Implementation,
measurement, and analysis of an image-based virtual environment
streaming protocol for wireless mobile devices,” IEEE Transactions
on Instrumentation and Measurement, vol. 57, no. 9, pp. 1894–1907,
2008.

[160] D. De Winter et al., “A hybrid thin-client protocol for multimedia
streaming and interactive gaming applications,” in Proceedings of
the 2006 international workshop on Network and operating systems
support for digital audio and video, ACM, 2006.

[161] O.-I. Holthe, O. Mogstad, and L. A. Ronningen, “Geelix LiveGames:
Remote playing of video games,” in 2009 6th IEEE Consumer
Communications and Networking Conference, IEEE, 2009, pp. 1–2.

[162] K.-T. Chen, Y.-c. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and
C.-H. Hsu, “On the quality of service of cloud gaming systems,”
Multimedia, IEEE Transactions on, vol. 16, no. 2, pp. 480–495, Feb.
2014. DOI: 10.1109/TMM.2013.2291532.

[163] W. Cai, V. C. Leung, and M. Chen, “Next generation mobile cloud
gaming,” in 2013 IEEE Seventh International Symposium on Service-
Oriented System Engineering, IEEE, 2013, pp. 551–560.

[164] O. Soliman, A. Rezgui, H. Soliman, and N. Manea, “Mobile cloud
gaming: Issues and challenges,” in Mobile Web Information Systems,
F. Daniel, G. A. Papadopoulos, and P. Thiran, Eds., Springer Berlin
Heidelberg, 2013, pp. 121–128.

[165] K.-T. Chen, C.-Y. Huang, and C.-H. Hsu, “Cloud gaming onward:
Research opportunities and outlook,” in 2014 IEEE International
Conference on Multimedia and Expo Workshops (ICMEW), IEEE,
2014, pp. 1–4.

[166] S.-P. Chuah, C. Yuen, and N.-M. Cheung, “Cloud gaming: A green
solution to massive multiplayer online games,” IEEE Wireless Com-
munications, vol. 21, no. 4, pp. 78–87, 2014.

[167] W. Cai et al., “The future of cloud gaming [point of view],”
Proceedings of the IEEE, vol. 104, no. 4, pp. 687–691, 2016. DOI:
10.1109/JPROC.2016.2539418.

[168] P. Graff, X. Marchal, T. Cholez, S. Tuffin, B. Mathieu, and O. Festor,
“An analysis of cloud gaming platforms behavior under different net-
work constraints,” in 3rd International Workshop on High-Precision,
Predictable, and Low-Latency Networking, 2021. [Online]. Available:
https://dl.ifip.org/db/conf/cnsm/cnsm2021/1570750103.pdf.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

30

[169] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano,
“A network analysis on cloud gaming: Stadia, geforce now and
psnow,” Network, vol. 1, no. 3, pp. 247–260, 2021. DOI: 10.3390/
network1030015. [Online]. Available: https://www.mdpi.com/2673-
8732/1/3/15.

[170] S. Perlman, Beta testing at the speed of light, https://web.archive.
org/web/20100125174142/http://blog.onlive.com/2010/01/21/beta-
testing-at-the-speed-of-light/, Accessed: 2021-11-16, 2010.

[171] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and P.
Hui, “A measurement study on achieving imperceptible latency in
mobile cloud gaming,” in Proceedings of the 8th ACM on Multimedia
Systems Conference, ser. MMSys’17, Taipei, Taiwan: Association for
Computing Machinery, 2017, pp. 88–99. DOI: 10 . 1145 / 3083187 .
3083191. [Online]. Available: https : / / doi . org / 10 . 1145 / 3083187 .
3083191.

[172] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Placing virtual machines to optimize cloud gaming experience,”
IEEE Transactions on Cloud Computing, vol. 3, no. 1, pp. 42–53,
2014.

[173] J. Wu, C. Yuen, N.-M. Cheung, J. Chen, and C. W. Chen, “Enabling
adaptive high-frame-rate video streaming in mobile cloud gaming
applications,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 12, pp. 1988–2001, 2015.

[174] F. Metzger, A. Rafetseder, and C. Schwartz, “A comprehensive end-
to-end lag model for online and cloud video gaming,” in PQS 2016
5th ISCA/DEGA Workshop on Perceptual Quality of Systems, 2016,
pp. 20–24. DOI: 10.21437/PQS.2016- 5. [Online]. Available: https:
//www.isca-speech.org/archive_v0/PQS_2016/abstracts/4.html.

[175] M. Claypool, “Motion and scene complexity for streaming video
games,” in Proceedings of the 4th International Conference on
Foundations of Digital Games, ACM, 2009, pp. 34–41.

[176] H. Shimizu, “Measuring keyboard response delays by comparing key-
board and joystick inputs,” Behavior Research Methods, Instruments,
& Computers, vol. 34, no. 2, pp. 250–256, 2002.

[177] R. Wimmer, A. Schmid, and F. Bockes, “On the latency of USB-
connected input devices,” in Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, ACM, 2019, p. 420.

[178] G. Casiez, S. Conversy, M. Falce, S. Huot, and N. Roussel, “Looking
through the eye of the mouse: A simple method for measuring end-
to-end latency using an optical mouse,” in Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology,
ACM, 2015, pp. 629–636.

[179] D. Luu, Keyboard latency. [Online]. Available: https://danluu.com/
keyboard-latency/ (visited on 11/16/2021).

[180] A. Patait and E. Young, “High performance video encoding
with NVIDIA GPUs,” in 2016 GPU Technology Conference
(https://goo.gl/Bdjdgm), 2016.

[181] J. Beyer, R. Varbelow, J.-N. Antons, and S. Zander, “A method
for feedback delay measurement using a low-cost arduino micro-
controller: Lesson learned: Delay influenced by video bitrate and
game-level,” in Quality of Multimedia Experience (QoMEX), 2015
Seventh International Workshop on, May 2015, pp. 1–2. DOI: 10 .
1109/QoMEX.2015.7148095.

[182] Digital Foundry. “Tech focus - v-sync: What is it - and should you
use it?” Accessed: 2021-11-16, YouTube. (Nov. 10, 2018), [Online].
Available: https://youtu.be/seyAzw9zEoY.

[183] Battle(non)sense. “Battle(non)sense youtube channel - netcode anal-
ysis, input lag analysis, concept design, easy to grasp explanations.”
Accessed: 2021-11-16, YouTube. (2019), [Online]. Available: https:
//www.youtube.com/user/xFPxAUTh0r1ty/videos.

[184] J. Zhao, R. S. Allison, M. Vinnikov, and S. Jennings, “Estimating the
motion-to-photon latency in head mounted displays,” in 2017 IEEE
Virtual Reality (VR), IEEE, 2017, pp. 313–314.

[185] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe, “Quantifying
and mitigating the negative effects of local latencies on aiming in 3D
shooter games,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, ACM, 2015, pp. 135–144.

[186] C. Ware and R. Balakrishnan, “Reaching for objects in vr displays:
Lag and frame rate,” ACM Transactions on Computer-Human Inter-
action (TOCHI), vol. 1, no. 4, pp. 331–356, 1994.

[187] S. Schmidt, S. Zadtootaghaj, and S. Möller, “Towards the delay
sensitivity of games: There is more than genres,” in 2017 Ninth Inter-
national Conference on Quality of Multimedia Experience (QoMEX),
IEEE, 2017, pp. 1–6.

[188] A. Sackl, R. Schatz, T. Hossfeld, F. Metzger, D. Lister, and R. Irmer,
“QoE management made uneasy: The case of cloud gaming,” in

2016 IEEE International Conference on Communications Workshops
(ICC), IEEE, 2016, pp. 492–497.

[189] J. Beyer, R. Varbelow, J.-N. Antons, and S. Möller, “Using electroen-
cephalography and subjective self-assessment to measure the influ-
ence of quality variations in cloud gaming,” in 2015 Seventh Inter-
national Workshop on Quality of Multimedia Experience (QoMEX),
IEEE, 2015, pp. 1–6.

[190] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming
in the clouds: QoE and the users’ perspective,” Mathematical and
Computer Modelling, vol. 57, no. 11-12, pp. 2883–2894, 2013.

[191] V. Clincy and B. Wilgor, “Subjective evaluation of latency and packet
loss in a cloud-based game,” in 2013 10th International Conference
on Information Technology: New Generations, IEEE, 2013, pp. 473–
476.

[192] H. Iqbal, A. Khalid, and M. Shahzad, “Dissecting cloud gaming
performance with decaf,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 5, no. 3, Dec. 2021. DOI: 10.1145/3491043. [Online]. Available:
https://doi.org/10.1145/3491043.

[193] S. Flinck Lindström, M. Wetterberg, and N. Carlsson, “Cloud gaming:
A QoE study of fast-paced single-player and multiplayer gaming,” in
2020 IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), 2020, pp. 34–45. DOI: 10.1109/UCC48980.2020.
00023.

[194] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei, “Are all games
equally cloud-gaming-friendly?: An electromyographic approach,” in
Proceedings of the 11th annual workshop on network and systems
support for games, IEEE Press, 2012, p. 3.

[195] I. Slivar, M. Suznjevic, and L. Skorin-Kapov, “The impact of video
encoding parameters and game type on QoE for cloud gaming: A
case study using the steam platform,” in 2015 Seventh International
Workshop on Quality of Multimedia Experience (QoMEX), IEEE,
2015, pp. 1–6.

[196] M. Claypool, A. Cockburn, and C. Gutwin, “Game input with delay:
Moving target selection parameters,” in Proceedings of the 10th ACM
Multimedia Systems Conference, ACM, 2019, pp. 25–35.

[197] D. C. Hoang, K. D. Doan, and L. T. Hoang, “Lag of legends: The
effects of latency on league of legends champion abilities,” Worcester
Polytechnic Institute, Tech. Rep., 2017.

[198] J. Beyer and S. Möller, “Assessing the impact of game type, dis-
play size and network delay on mobile gaming QoE,” PIK-Praxis
der Informationsverarbeitung und Kommunikation, vol. 37, no. 4,
pp. 287–295, 2014.

[199] M. Claypool and K. Claypool, “Latency can kill: Precision and
deadline in online games,” in Proceedings of the 2010 Multimedia
Systems Conference, Scottsdale, Arizona, USA, Feb. 2010.

[200] M. Bredel and M. Fidler, “A measurement study regarding quality
of service and its impact on multiplayer online games,” in 2010 9th
Annual Workshop on Network and Systems Support for Games, IEEE,
2010, pp. 1–6.

[201] M. Ries, P. Svoboda, and M. Rupp, “Empirical study of subjective
quality for massive multiplayer games,” in 2008 15th International
Conference on Systems, Signals and Image Processing, IEEE, 2008,
pp. 181–184.

[202] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affecting
players’ performance and perception in multiplayer games,” in Pro-
ceedings of the Workshop on Network and System Support for Games,
Hawthorne, New York, USA, Oct. 2005.

[203] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M.
Claypool, “The effects of loss and latency on user performance in
Unreal Tournament 2003®,” in Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games, ACM, 2004,
pp. 144–151.

[204] J. Nichols and M. Claypool, “The effects of latency on online madden
nfl football,” in Proceedings of the 14th international workshop on
Network and operating systems support for digital audio and video,
ACM, 2004, pp. 146–151.

[205] K. T. Claypool and M. Claypool, “On frame rate and player perfor-
mance in first person shooter games,” Multimedia systems, vol. 13,
no. 1, pp. 3–17, 2007.

[206] R. T. Wood, M. D. Griffiths, D. Chappell, and M. N. Davies,
“The structural characteristics of video games: A psycho-structural
analysis,” CyberPsychology & behavior, vol. 7, no. 1, pp. 1–10, 2004.

[207] D. A. Laffan, J. Greaney, H. Barton, and L. K. Kaye, “The relation-
ships between the structural video game characteristics, video game
engagement and happiness among individuals who play video games,”
Computers in Human Behavior, vol. 65, pp. 544–549, 2016.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

31

[208] J. H. Brockmyer, C. M. Fox, K. A. Curtiss, E. McBroom, K. M.
Burkhart, and J. N. Pidruzny, “The development of the game en-
gagement questionnaire: A measure of engagement in video game-
playing,” Journal of Experimental Social Psychology, vol. 45, no. 4,
pp. 624–634, 2009.

[209] H. L. O’Brien and E. G. Toms, “What is user engagement? a
conceptual framework for defining user engagement with technol-
ogy,” Journal of the American society for Information Science and
Technology, vol. 59, no. 6, pp. 938–955, 2008.

[210] P. Sweetser and P. Wyeth, “GameFlow: A model for evaluating player
enjoyment in games,” Computers in Entertainment (CIE), vol. 3,
no. 3, pp. 3–3, 2005.

[211] M. E. Seligman, Flourish: A visionary new understanding of happi-
ness and well-being. Simon and Schuster, 2012.

[212] A. Z. Abbasi, D. H. Ting, and H. Hlavacs, “Proposing a new con-
ceptual model predicting consumer videogame engagement triggered
through playful-consumption experiences,” in International Confer-
ence on Entertainment Computing, Springer, 2016, pp. 126–134.

[213] A. Z. Abbasi and A. B. S. A. Jamak, “Playful-consumption experience
of videogame-play influences consumer video-game engagement:
A conceptual model,” Global Business and Management Research,
vol. 9, no. 1s, p. 244, 2017.

[214] S. Schmidt et al., “Requirement specification and possible structure
for an opinion model predicting gaming QoE (G.OMG),” ITU, CH-
Geneva, ITU-T Recommendation, May 2018, pp. 1–20.

[215] E. L.-C. Law, F. Brühlmann, and E. D. Mekler, “Systematic review
and validation of the game experience questionnaire (GEQ) - implica-
tions for citation and reporting practice,” in Proceedings of the 2018
Annual Symposium on Computer-Human Interaction in Play, ser. CHI
PLAY ’18, Melbourne, VIC, Australia: Association for Computing
Machinery, 2018, pp. 257–270. DOI: 10 . 1145 / 3242671 . 3242683.
[Online]. Available: https://doi.org/10.1145/3242671.3242683.

[216] F. Mäyrä and L. Ermi, “Fundamental components of the gameplay
experience,” DIGAREC Series, analysing immersion, no. 6, pp. 88–
115, 2011.

[217] K. L. Norman, “GEQ (game engagement/experience questionnaire):
A review of two papers,” Interacting with Computers, vol. 25, no. 4,
pp. 278–283, 2013.

[218] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm
in cloud gaming: A measurement study on cloud to end-user latency,”
in Proceedings of the 11th annual workshop on network and systems
support for games, IEEE Press, 2012, p. 2.

[219] C. Mo, G. Zhu, Z. Wang, and W. Zhu, “Understanding gaming
experience in mobile multiplayer online battle arena games,” in
Proceedings of the 28th ACM SIGMM Workshop on Network and
Operating Systems Support for Digital Audio and Video, ACM, 2018,
pp. 25–30.

[220] M. Hirth, F. Allendorf, F. Metzger, and C. Schwartz, “Assessing the
accuracy of network estimations in the DOTA 2 game client,” in
Proc. 5th ISCA/DEGA Workshop on Perceptual Quality of Systems
(PQS 2016), 2016, pp. 20–24.

[221] M. Hirth, K. Borchert, F. Allendorf, F. Metzger, and T. Hoßfeld,
“Crowd-based study of gameplay impairments and player perfor-
mance in DOTA 2,” in Internet-QoE’19 Workshop, Oct. 2019.

[222] G. Armitage, “An experimental estimation of latency sensitivity in
multiplayer Quake 3,” in The 11th IEEE International Conference on
Networks, 2003. ICON2003., IEEE, 2003, pp. 137–141.

[223] S. Zadtootaghaj, S. Schmidt, N. Barman, S. Möller, and M. G. Mar-
tini, “A classification of video games based on game characteristics
linked to video coding complexity,” in 2018 16th Annual Workshop on
Network and Systems Support for Games (NetGames), IEEE, 2018,
pp. 1–6.

[224] ITU-T recommendation G.1072: Opinion model predicting gaming
quality of experience for cloud gaming services, SERIES G: TRANS-
MISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND
NETWORKS, Jan. 2020. [Online]. Available: https:/ /www.itu. int /
rec/T-REC-G.1072/en.

[225] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative
relationship between quality of experience and quality of service,”
IEEE Network, vol. 24, no. 2, pp. 36–41, 2010. DOI: 10.1109/MNET.
2010.5430142.

[226] F. Metzger, N. Stulier, K. Borchert, and M. Hirth, “Relationship
status: It’s complicated. using APM as a QoE-qualifying tempo
metric,” in 2021 13th International Conference on Quality of Mul-
timedia Experience (QoMEX), 2021, pp. 145–150. DOI: 10 . 1109 /
QoMEX51781.2021.9465396.

[227] S. S. Sabet, C. Griwodz, and S. Möller, “Influence of primacy,
recency and peak effects on the game experience questionnaire,” in
Proceedings of the 11th ACM Workshop on Immersive Mixed and Vir-
tual Environment Systems, ser. MMVE ’19, Amherst, Massachusetts:
ACM, 2019, pp. 22–27. DOI: 10.1145/3304113.3326113. [Online].
Available: http://doi.acm.org/10.1145/3304113.3326113.

[228] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, C. Griwodz, and S. Möller,
“Delay sensitivity classification of cloud gaming content,” ser. MMVE
’20, Istanbul, Turkey: Association for Computing Machinery, 2020,
pp. 25–30. DOI: 10 . 1145 / 3386293 . 3397116. [Online]. Available:
https://doi.org/10.1145/3386293.3397116.

[229] J. Iyengar and M. Thomson, RFC 9000: QUIC: A UDP-Based Mul-
tiplexed and Secure Transport, RFC, May 2021. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc9000.html.

[230] K. Lepola, “Managing network delay for browser multiplayer games,”
M.S. thesis, University of Helsinki, Faculty of Science, 2020. [On-
line]. Available: http://urn.fi/URN:NBN:fi:hulib-202011174485.

[231] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, B. Naderi, C. Griwodz,
and S. Möller, “A latency compensation technique based on game
characteristics to mitigate the influence of delay on cloud gaming
quality of experience,” in Proceedings of the 11th ACM Multimedia
Systems Conference, ser. MMSys ’20, Istanbul, Turkey: Association
for Computing Machinery, 2020, pp. 15–25. DOI: 10.1145/3339825.
3391855. [Online]. Available: https : / / doi . org / 10 . 1145 / 3339825 .
3391855.

[232] K. Lee et al., “Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming,” in Proceedings
of the 13th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’15, Florence, Italy, 2015,
pp. 151–165. DOI: 10.1145/2742647.2742656. [Online]. Available:
https://doi.org/10.1145/2742647.2742656.

[233] J. Kim, P. Knowles, J. Spjut, B. Boudaoud, and M. Mcguire, “Post-
render warp with late input sampling improves aiming under high
latency conditions,” Proc. ACM Comput. Graph. Interact. Tech.,
vol. 3, no. 2, Aug. 2020. DOI: 10.1145/3406187. [Online]. Available:
https://doi.org/10.1145/3406187.

[234] E. Carlson, T. Fan, Z. Guan, X. Xu, and M. Claypool, “Towards
usable attribute scaling for latency compensation in cloud-based
games,” in Proceedings of the Workshop on Game Systems (GameSys
’21), ser. GameSys ’21, Istanbul, Turkey: Association for Computing
Machinery, 2021, pp. 20–25. DOI: 10 . 1145 / 3458335 . 3460964.
[Online]. Available: https://doi.org/10.1145/3458335.3460964.

[235] I. S. Mohammadi, M. Ghanbari, and M. R. Hashemi, “A hybrid
graphics/video rate control method based on graphical assets for
cloud gaming,” Journal of Real-Time Image Processing, 2021. DOI:
10 . 1007 / s11554 - 021 - 01159 - y. [Online]. Available: https : / / link .
springer.com/article/10.1007/s11554-021-01159-y.

[236] O. Mossad, K. Diab, I. Amer, and M. Hefeeda, “Deepgame: Effi-
cient video encoding for cloud gaming,” in New York, NY, USA:
Association for Computing Machinery, 2021, pp. 1387–1395. DOI:
10.1145/3474085.3475594. [Online]. Available: https://dl.acm.org/
doi/10.1145/3474085.3475594.

[237] M. Stengel, Z. Majercik, B. Boudaoud, and M. McGuire, “A dis-
tributed, decoupled system for losslessly streaming dynamic light
probes to thin clients,” in Proceedings of the 12th ACM Multimedia
Systems Conference, ser. MMSys ’21, Istanbul, Turkey: Association
for Computing Machinery, 2021, pp. 159–172. DOI: 10 . 1145 /
3458305 . 3463379. [Online]. Available: https : / / doi . org / 10 . 1145 /
3458305.3463379.

[238] G. K. Illahi, M. Siekkinen, T. Kämäräinen, and A. Ylä-Jääski,
“Foveated streaming of real-time graphics,” in Proceedings of the
12th ACM Multimedia Systems Conference, ser. MMSys ’21, Istanbul,
Turkey: Association for Computing Machinery, 2021, pp. 214–226.
DOI: 10.1145/3458305.3463383. [Online]. Available: https://doi.org/
10.1145/3458305.3463383.

[239] A. E. Alchalabi, S. Shirmohammadi, S. Mohammed, S. Stoian, and
K. Vijayasuganthan, “Fair server selection in edge computing with
q-value-normalized action-suppressed quadruple q-learning,” IEEE
Transactions on Artificial Intelligence, 2021. DOI: 10.1109/TAI.2021.
3105087.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

32

Florian Metzger is a postdoctoral researcher at the
Chair of Communication Networks at the University
of Würzburg since 2018. In 2015 he received his
doctorate degree in computer science at the Uni-
versity of Vienna, Austria. Until 2018 he was a
postdoctoral researcher at the chair of Modeling of
Adaptive Systems at the University of Duisburg-
Essen, Germany. His research focus are mobile
networks and online and cloud gaming.

Stefan Geißler is heading the Cloud Applications
and Networks Research Group at the Chair of Com-
munication Networks at the University of Würzburg,
Germany, where he also completed his PhD in 2022.
His research topics include Software Defined Net-
working and Network Function Virtualization with
a focus on performance evaluation as well as the
investigation of Internet of Things technologies.

Alexej Grigorjew received his MSc degree in com-
puter science from the University of Würzburg,
Germany, in 2016. Currently he is a PhD student at
the Chair of Communication Networks in Würzburg.
His early research interests included SDN, NFV, and
programmable data planes. Since 2018, his main fo-
cus has been low latency networking and TSN, with
an emphasis on distributed latency bound analysis
and network configuration.

Frank Loh is a research assistant at the University
of Würzburg, Germany. Since 2017, he is a PhD
student at the Chair of Communication Networks
in Würzburg, Germany, with Prof. Tobias Hoßfeld.
His main research focus includes QoS monitoring
and QoE prediction, as well as Internet of Things
technologies like LoRaWAN.

Christian Moldovan received his master’s degree
in computer science and the PhD degree from the
University of Würzburg, Germany, in 2014 and
2021, respectively. His dissertation was on “Per-
formance Modeling of Mobile Video Streaming”.
He is currently researching and developing indoor-
localization technologies that rely on industrial 5G
campus networks at Comnovo in Dortmund, Ger-
many.

Michael Seufert received the Diploma and PhD
degrees in computer science and the BSc degree in
economathematics from the University of Würzburg,
Würzburg, Germany in 2011, 2017, and 2018, re-
spectively. He additionally passed the first state ex-
aminations for teaching mathematics and computer
science in secondary schools in 2011. From 2012–
2013, he was with FTW Telecommunication Re-
search Center, Vienna, Austria, working in Research
Area U “User-centered Interaction and Communica-
tion Economics”, and from 2018–2019, he was with

AIT Austrian Institute of Technology GmbH, Vienna, Austria, working in the
Digital Insight Lab of the Center for Digital Safety and Security. Since 2019,
he is the head of the “User-Centric Communication Networks” research group
of the Chair of Communication Networks at the University of Würzburg,
Würzburg, Germany. His research mainly focuses on Quality of Experience
(QoE) of Internet applications, network management, artificial intelligence
and machine learning for communication networks, as well as performance
analysis and modeling of communication systems.

Tobias Hoßfeld is professor at the Chair of Com-
munication Networks at the University of Würzburg,
Germany, since 2018. He finished his PhD in 2009
and his professorial thesis (habilitation) “Modeling
and Analysis of Internet Applications and Services”
in 2013 at the University of Würzburg, where he
was also heading the “Future Internet Applications
& Overlays” research group. From 2014 to 2018, he
was head of the Chair “Modeling of Adaptive Sys-
tems” at the University of Duisburg-Essen, Germany.
He has published more than 100 research papers in

major conferences and journals, receiving 5 best conference paper awards,
3 awards for his PhD thesis, and the Fred W. Ellersick Prize 2013 (IEEE
Communications Society) for one of his articles on QoE. He is member of
the advisory board of the ITC conference and the editorial board of IEEE
Communications Surveys & Tutorials.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3177251

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

